

# Notice of Construction (NOC) Worksheet



|                                                                          |                                                                                                       |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <b>Source:</b> Bonney-Watson Washington Memorial Park                    | <b>NOC Number:</b> 12349                                                                              |
| <b>Installation Address:</b> 16445 International Blvd   SeaTac, WA 98188 | <b>Registration Number:</b> 29111                                                                     |
| <b>Contact Name:</b> Laura Frampton                                      | <b>Contact Email:</b><br><a href="mailto:LFrampton@bonney-watson.com">LFrampton@bonney-watson.com</a> |
| <b>Applied Date:</b> 05/03/2023                                          | <b>Contact Phone:</b> (206) 242-1787                                                                  |
| <b>Engineer:</b> Carl Slimp                                              | <b>Inspector:</b> James Moore                                                                         |

## A. DESCRIPTION

### For the Order of Approval:

To install and operate an American Crematory Equipment Co, Model A-250- Instant Access after the removal of one Matthews Power Pak II cremator.

### Additional Information (if needed):

#### Facility

This facility currently operates two cremation units:

- 1 Matthews Power-Pak II, Power-Pak II Cremator installed in 2010 and permitted under 10187
- 1 Mathews Super Power-Pak III installed in 2018 and permitted under 11722

#### Permit History

The unit being replaced operates under NOC 10187, which was approved in October 2015.

## B. DATABASE INFORMATION

The screenshot shows the Puget Sound Clean Air Agency (PSCAA) software interface. The main window is titled 'Equipment Actions' and displays a form for a cremator unit. The form includes fields for 'Reg.', 'Code', 'Year Installed', 'Primary Fuel', 'NOC/Notification #', 'Comments', and 'Operating Requirements'. Below the form are two tables: 'Currently Linked Control Equipment' and 'Previously Linked Control Equipment', both showing a single row of data. The right side of the screen features a vertical toolbar with various icons for different agency functions and a 'Inspector Assignments' section.

Bonney-Watson Washington Memorial Park  
NOC Worksheet No. 12349

A screenshot of the CleanAir software interface. The main window shows a 'Data' tab with a search bar for 'Offsite Report Search' and 'NC Search'. The search results for 'Reg: 29111 - Bonney-Watson Washington Memorial Park' are displayed, including fields for 'Year Installed' (2023), 'Units Installed' (1), 'Rated Capacity' (125), 'Units' (Lb/Hr), 'Rated Exhaust Flowrate' (195300 CFM), and 'NC/Notification #' (12349). A checkbox for 'NOC Not Required?' is checked. The 'Comments' field is empty. To the right of the main window is a 'Dashboard' sidebar with a grid of icons representing various agency functions, and a section titled 'Inspector Assignments'.

|                                               |           |                               |                       |
|-----------------------------------------------|-----------|-------------------------------|-----------------------|
| <b>New NSPS due to this NOCOA?</b>            | <b>No</b> | <b>Applicable NSPS: N/A</b>   | <b>Delegated? N/A</b> |
| <b>New NESHAP due to this NOCOA?</b>          | <b>No</b> | <b>Applicable NESHAP: N/A</b> | <b>Delegated? N/A</b> |
| <b>New Synthetic Minor due to this NOCOA?</b> | <b>No</b> |                               |                       |

### C. NOC FEES AND ANNUAL REGISTRATION FEES

#### NOC Fees:

Fees have been assessed in accordance with the fee schedule in Regulation I, Section 6.04. All fees must be paid prior to issuance of the final Order of Approval.

| Fee Description                                                                                 | Cost                         | Amount Received (Date)  |
|-------------------------------------------------------------------------------------------------|------------------------------|-------------------------|
| Filing Fee                                                                                      | \$ 1,550                     |                         |
| Equipment                                                                                       | \$ 1,000                     |                         |
| SEPA (DNS)                                                                                      | \$ 1,200                     |                         |
| Document Review to Determine the Notice of Construction Permitting History of an Emissions Unit | \$ 650                       |                         |
| Review of Engineering Source Testing submitted in support of application                        | \$ 1,000                     |                         |
| Agency Review of Refined Dispersion Modeling (provided by applicant)                            | \$ 1,500                     |                         |
| Public Notice (under WAC 173-400-171) plus                                                      | \$750 plus publication costs |                         |
|                                                                                                 |                              |                         |
| Filing received                                                                                 |                              | \$ 1,550 (5/2/2023)     |
| Additional fee received                                                                         |                              | \$ 6,100 (not yet paid) |
| <b>Total</b>                                                                                    | <b>\$ 7,650</b>              |                         |

**Registration Fees:**

Registration fees are assessed to the facility on an annual basis. Fees are assessed in accordance with Regulation I, Section 5.07. The previous years registration is shown below, and this permit will not change the registration fees that are applicable. It should be noted that Reg I, 5.07(c) has changed from \$1,150 to \$1,350.



## Puget Sound Clean Air Agency

1904 Third Avenue, Suite 105  
Seattle, WA 98101-3317  
Tax ID: 91-0823558  
206.689.4072

### Invoice for Year 2023 Registration Fees

| Bill To:                               |
|----------------------------------------|
| Bonney-Watson Washington Memorial Park |
| 16445 International Blvd               |
| Sea-Tac, WA 98188                      |
| <b>Attention: Accounts Payable</b>     |

| Invoice Date:                 | Invoice #:  |
|-------------------------------|-------------|
| November 19, 2022             | 20230612    |
| Due Date:                     | Terms:      |
| January 03, 2023              | Net 45 Days |
| Facility ID (Registration #): |             |
| 29111                         |             |

**Site Address:** Bonney-Watson Washington Memorial Park  
16445 International Blvd, SeaTac, WA 98188

The annual registration fee is required by Washington State law and Puget Sound Clean Air Agency's Regulation I.

| Facility Fees and Applicable Regulations                                                                                                                                                 | Charges            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Base Fee for Registered Sources. Reg I, 5.07(c)<br>Reg I, 5.03(a)(4)(A) - Facilities with incinerators                                                                                   | \$ 1,150.00        |
| Fee Totals                                                                                                                                                                               |                    |
| <b>TOTAL REGISTRATION FEE</b>                                                                                                                                                            | <b>\$ 1,150.00</b> |
| <i>The Total Registration Fee is due by January 03, 2023. If unpaid after January 03, 2023, the facility may be subject to enforcement action with civil penalties (Reg I, 5.07(b)).</i> |                    |

Pay online and confirm payment: [www.pscleanair.gov/annualfee](http://www.pscleanair.gov/annualfee)

This copy is for your records. If paying by check, please mail the yellow copy with your payment.  
Your canceled check is your receipt.

10/27/2022

| <b>Applicability</b>           |                                                                                          |                        |
|--------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Regulation I                   | Description                                                                              | Note                   |
| Reg I, 5.04(a)(4)(A)           | Refuse burning equipment subject to Section 9.05 of Regulation I (including crematories) |                        |
| <b>Annual Registration Fee</b> |                                                                                          |                        |
| Regulation I                   | Description                                                                              | Fee                    |
| Reg I, 5.07(c)                 | registered sources shall be assessed a fee of \$1,350                                    | \$1,350                |
|                                |                                                                                          | <b>Total =</b> \$1,350 |

#### **D. STATE ENVIRONMENTAL POLICY ACT (SEPA) REVIEW**

State Environmental Policy Act (SEPA) review was conducted in accordance with Regulation I, Article 2. The SEPA review is undertaken to identify and help government decision-makers, applicants, and the public to understand how a project will affect the environment. A review under SEPA is required for projects that are not categorically exempt in WAC 197-11-800 through WAC 197-11-890. A new source review action which requires a NOC application submittal to the Agency is not categorically exempt.



11722-dns.pdf



10187-dns.pdf

A new SEPA determination is not required because the potential impacts from this project were reviewed under SEPA by Carole Cenci and a DNS was issued by PSCAA with NOC 10187, on 10/14/15 A copy of this DNS is included below and is being relied upon for this project.

The city of Seatac was consulted for comments on June 6, 2023 and replied that the replacement of the cremator would trigger a mechanical permit, and perhaps electrical permit, from the City. However, those permits and the type of work does not trigger SEPA in SeaTac and would be SEPA exempt.

Based on the proposed action and the information in the checklist, the project will not: adversely affect environmentally sensitive or special areas, or endangered or threatened species; conflict with local, state, or federal laws or requirements for the protection of the environment, or establish a precedent for future actions with significant effects. This proposal is not likely to have a probable significant adverse environmental impact, and I recommend the issuance of a Determination of Non-Significance with no public comment.

#### **E. TRIBAL CONSULTATION**

On November 21, 2019, the Agency's Interim Tribal Consultation Policy was adopted by the Board. Criteria requiring tribal consultation are listed in Section II.A of the policy and include establishment of a new air operating permit source, establishment of a new emission reporting source, modification of an existing emission reporting source to increase production capacity, or establishment or modification of certain equipment or activities. In addition, if the Agency receives an NOC application that does not

meet the criteria in Section II.A but may represent similar types and quantities of emissions, the Agency has the discretion to provide additional consultation opportunities.

This project does not meet any of the criteria for consultation listed in Section II.A of the Agency's Interim Tribal Consultation Policy.

## **F. BEST AVAILABLE CONTROL TECHNOLOGY (BACT) REVIEW**

### **Best Available Control Technology (BACT)**

New stationary sources of air pollution are required to use BACT to control all pollutants not previously emitted, or those for which emissions would increase as a result of the new source or modification. BACT is defined in WAC 173-400-030 as, "an emission limitation based on the maximum degree of reduction for each air pollutant subject to regulation under Chapter 70.94 RCW emitted from or which results from any new or modified stationary source, which the permitting authority, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through application of production processes and available methods, systems, and techniques, including fuel cleaning, clean fuels, or treatment or innovative fuel combustion techniques for control of each pollutant."

An emissions standard or emissions limitation means "a requirement established under the Federal Clean Air Act or Chapter 70.94 RCW which limits the quantity, rate, or concentration of emissions of air contaminants on a continuous basis, including any requirement relating to the operation or maintenance of a source to assure continuous emission reduction and any design, equipment, work practice, or operational standard adopted under the Federal Clean Air Act or Chapter 70.94 RCW."

### **Best Available Control Technology for Toxics (tBACT)**

New or modified sources are required to use tBACT for emissions control for TAP. Best available control technology for toxics (tBACT) is defined in WAC 173-460-020 as, "the term defined in WAC 173-400-030, as applied to TAP."

Similar Permits

| Origin               | Emissions Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operational and Design Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSCAA<br>(No 11869)  | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Visible emissions shall not exceed 5% for more than 3 minutes in any 1 hour</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NOx concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <p>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</p>                                                                                                                                           | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> <li>651,000 lbs 12-month rolling average limit</li> </ul>                                                                                                                                      |
| PSCAA<br>(No. 11808) | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Visible emissions shall not exceed 5% for more than 3 minutes in any 1 hour</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NOx concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>Metals</b></p> <ul style="list-style-type: none"> <li>Limit annual throughput</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>Secondary chamber temperature interlock set point at 1,650 degrees Fahrenheit</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul> <p><b>Metals:</b></p> <ul style="list-style-type: none"> <li>Limit of 530,000 lbs/year</li> </ul> |

| Origin               | Emissions Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operational and Design Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSCAA<br>(No. 11722) | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Visible emissions shall not exceed 5% for more than 3 minutes in any 1 hour</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NO<sub>x</sub> concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <p>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</p> <p><b>Hexavalent Chromium:</b><br/>Limit of throughput to 445,000 lbs/year</p> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>Secondary chamber temperature interlock set point at 1,600 degrees Fahrenheit</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul> <p><b>Hexavalent Chromium</b></p> <ul style="list-style-type: none"> <li>SDS of refractory contain no hexavalent chromium</li> </ul> |
| PSCAA<br>(No. 11670) | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Visible emissions shall not exceed 5% for more than 3 minutes in any 1 hour</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NO<sub>x</sub> concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul>                                     | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>Secondary chamber temperature interlock set point at 1,650 degrees Fahrenheit</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul>                                                                                                                                      |

| Origin               | Emissions Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operational and Design Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSCAA<br>(No. 11540) | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>No visible emissions during daylight operation</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NO<sub>x</sub> concentration shall not exceed 60 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul>   | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>Secondary chamber temperature interlock set point at 1,650 degrees Fahrenheit</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul> |
| PSCAA<br>(No. 11376) | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.06 grains per dry standard cubic foot corrected to 12% CO<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>No visible emissions during daylight operation</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NO<sub>x</sub> concentration shall not exceed 60 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>Secondary chamber temperature interlock set point at 1,650 degrees Fahrenheit</li> <li>A minimum secondary chamber residence time of 1.2 seconds or more</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul> |

| Origin                     | Emissions Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operational and Design Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCEQ                       | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM: Visible emissions shall not exceed 5.0% opacity averaged over a six minute period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>Secondary chamber is heated by a natural gas/propane fired burner and fires at twice the heat rate of the primary chamber burner</li> <li>A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>A minimum secondary chamber flue gas residence time of 0.5 seconds or more</li> </ul> <p><b>Visible Emissions, CO:</b></p> <ul style="list-style-type: none"> <li>Cremators without continuous opacity or carbon monoxide monitors are limited to operating from one-hour after sunrise to one-hour before sunset</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul> |
| MassDep<br>(No. SE-14-003) | <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>Visible emissions shall not exceed 5% opacity except when 5% to 20% for &lt; 2 consecutive minutes during any one hour</li> </ul> <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>PM emissions shall not exceed 0.060 grains per dry standard cubic foot corrected to 7% O<sub>2</sub></li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>NO<sub>x</sub> concentration shall not exceed 200 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>CO concentration shall not exceed 50 ppmv corrected to 7% O<sub>2</sub> dry basis</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>Dual-chambered cremator design</li> <li>A minimum secondary chamber temperature of 1,600 °F during cremation cycle</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>Combustion of natural gas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Origin                                                                  | Emissions Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operational and Design Limitation                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MaineDep<br>(No. A-818-71-C-R)                                          | <p><b>VOC:</b></p> <ul style="list-style-type: none"> <li>▪ VOC emissions shall not exceed 0.130 lbs per hour</li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>▪ Visible emissions shall not exceed 10.0% opacity based on a six minute block average basis</li> </ul> <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>▪ PM emissions shall not exceed 0.920 lbs per hour</li> </ul> <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ NO<sub>x</sub> emissions shall not exceed 0.350 lbs per hour</li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>▪ CO emissions shall not exceed 0.230 lbs per hour</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ SO<sub>2</sub> emissions shall not exceed 0.370 lbs per hour</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> <li>▪ A minimum secondary chamber flue gas residence time of 0.5 seconds or more</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul> |
| SMAQMD<br>(No. 145)                                                     | <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ NO<sub>x</sub> concentration shall not exceed 60 ppmv corrected to 3% O<sub>2</sub> dry basis (natural gas combustion only with no charge)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul>                                                                                       |
| SCAQMD<br>(BACT Guidelines for Non Major Polluting Facilities, Page 36) | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ A minimum secondary chamber temperature of 1,500 degrees Fahrenheit</li> <li>▪ Operation limitations only apply to PM<sub>10</sub> – none for PM<sub>2.5</sub></li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul>                   |
| BAAQMD<br>(BACT Guideline – Crematory)                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ A minimum secondary chamber temperature of 1,600 °F (set point at 1,650)</li> <li>▪ Limitations only apply to PM<sub>10</sub> – none for PM<sub>2.5</sub></li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul>                        |

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWCAA<br>(ADP 17-3240R1) | <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ NO<sub>x</sub> concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub></li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>▪ CO concentration shall not exceed 40 ppmv corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>▪ Visible emissions shall not exceed 5% opacity for more than three minutes during the initial 15 minutes of the cremation cycle and 0% opacity for more than three minutes during any-1hour period after the initial 15-minute period.</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ Minimum afterburner temperature of 1,500°F during the entire cremation process</li> <li>▪ Prior to charging the primary chamber, afterburner must reach a minimum of 1,600°F for a period of at least 30 minutes</li> <li>▪ A minimum afterburner residence time of 0.5 seconds or more</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul> |
| SWCAA<br>(ADP 18-3308)   | <p><b>NO<sub>x</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ NO<sub>x</sub> concentration shall not exceed 140 ppmv corrected to 7% O<sub>2</sub></li> </ul> <p><b>CO:</b></p> <ul style="list-style-type: none"> <li>▪ CO concentration shall not exceed 40 ppmv corrected to 7% O<sub>2</sub></li> </ul> <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>▪ Visible emissions shall not exceed 5% opacity for more than three minutes during the initial 15 minutes of the cremation cycle and 0% opacity for more than three minutes during any-1hour period after the initial 15-minute period.</li> </ul> | <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ Minimum afterburner temperature of 1,500°F during the entire cremation process</li> <li>▪ Prior to charging the secondary chamber, afterburner must reach a minimum of 1,500°F</li> <li>▪ A minimum afterburner residence time of 0.5 seconds or more</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul>                                   |

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDEQ<br>(No. 3236-04) | <p><b>Visible Emissions:</b></p> <ul style="list-style-type: none"> <li>▪ Visible emissions shall not exhibit an opacity of 10% or greater averaged over 6 consecutive minutes</li> </ul> <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP:</b></p> <ul style="list-style-type: none"> <li>▪ PM emissions shall not cause an excess of 0.10 grains per dry standard cubic feet (gr/dscf) corrected to 12% carbon dioxide (CO<sub>2</sub>)</li> </ul> <p><b>PM<sub>2.5</sub>, PM<sub>10</sub>, TSP, Visible Emissions, NO<sub>x</sub>, CO, VOC:</b></p> <ul style="list-style-type: none"> <li>▪ Proper crematorium design and operation relying on good turbulence, high temperature and gas residence time within the secondary combustion chamber:           <ol style="list-style-type: none"> <li>1. Turbulence is achieved with proper introduction of air into the combustion chambers</li> <li>2. Temperature in the secondary chamber must be maintained at an operating temperature of 1,500 degrees Fahrenheit with no single reading less than 1,400 degrees Fahrenheit</li> <li>3. The gas residence time in the secondary chamber and flue stack must be over 1.2 seconds</li> </ol> </li> <li>▪ Operating procedures, design including temperature and timer interlocks to ensure proper combustion</li> <li>▪ Flame monitoring for both the primary and secondary chamber burners</li> <li>▪ Smoke control managed by automatically detecting rate of temperature rise within the primary chamber and adding additional secondary chamber combustion air</li> </ul> <p><b>SO<sub>2</sub>:</b></p> <ul style="list-style-type: none"> <li>▪ Combustion of natural gas</li> </ul> |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Analysis & Recommendations

| Pollutant                      | Available Method That Meets BACT                                                                     | Implementation of Method                                                                                                                                                                                                      |
|--------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCs including volatile TAPs   | Limit throughput                                                                                     |                                                                                                                                                                                                                               |
| PM including non-volatile TAPs | PM emissions shall not exceed 0.05 grains per dry standard cubic foot corrected to 7% O <sub>2</sub> | <ul style="list-style-type: none"> <li>▪ Dual-chambered cremator design</li> <li>▪ Combustion of natural gas</li> <li>▪ A minimum secondary chamber temperature of 1,600 degrees Fahrenheit during cremation cycle</li> </ul> |
| NO <sub>x</sub>                | NO <sub>x</sub> concentration shall not exceed 140 ppmv corrected to 7% O <sub>2</sub> dry basis     | <ul style="list-style-type: none"> <li>▪ Implementation of an opacity monitoring system and temperature control system interlocked to a combustion control system with an audible alarm</li> </ul>                            |
| CO                             | CO concentration shall not exceed 50 ppmv corrected to 7% O <sub>2</sub> dry basis                   | <ul style="list-style-type: none"> <li>▪ Secondary chamber residence time sufficient to meet emission limitations</li> </ul>                                                                                                  |
| SO <sub>2</sub>                | None                                                                                                 |                                                                                                                                                                                                                               |

I have reviewed the most recent permits, as well as past permits for this crematory. The BACT for the criteria pollutants has been consistent, and the controls are an industry standard of using a secondary chamber set at a minimum of 1,600 degrees Fahrenheit with a sufficient residence time and an opacity

monitor. Past BACT has been 0.06 gr/dscf, however, this exceeds our emission limits of 0.05 gr/dscf of regulation 1. Therefore, that will need to be decreased to meet our regulation standards.

There have been no specific control technologies for TAPs. Hexavalent Chromium (Hex Cr) consistently exceeds the SQER, and production needs to be limited to pass the ASIL limit. This has been the limiting factor for recent crematories. Hex Cr can come from 2 sources. The first is from the bio accumulation in the person being burned. The second is from the refractory. Some refractory production has been changed to eliminate the chromium content, which also helps eliminate the hazardous disposal later when maintenance and rebricking is required. This is the case for this model, and SDS's for the unit has been provided and reviewed.

In recent applications, a condition was added that the crematory must operate for 30 minutes after a cycle has ended. However, this has an effect of increasing emissions, as it has led to operating an empty unit. Cremations generally do not go to completion, but are manually cut short and emptied, where the ashes are manually emptied. Also, I could not find the logic for this in any of the BACT analysis. I did find conditions where the unit must be at temperature for half an hour before loading. This would limit possible cold spots and prematurely loading the unit. There is also a requirement that the temperature monitoring system must operate for half an hour after cremation cycle. This should not be confused with the unit having to be above 1600 degrees F after the cremation cycle, but would help to show when the unit was brought down when records are reviewed. I propose to change the requirement from keeping the unit at temp for half an hour after the cremation cycle ends to ensuring that the unit is at the required temperature for half an hour before the cremation cycle starts.

## **G. EMISSION ESTIMATES**

### **Proposed Project Emissions**

#### Actual Emissions

The applicant provided the following emission estimate.

These emissions were provided by the applicant assuming the incineration of 223,400 pounds per year.

#### Potential Emissions

The emission above are limited by WAC 173-460-153, and represent potential emissions.

### **Facility-wide Emissions**

#### Actual Emissions

NOC 11722 is the only other source of air emissions for this source. Where 443,000 lbs can be cremated per year. The following emissions estimated:

|      | NOC 11722 | NOC 12349 | Total  |
|------|-----------|-----------|--------|
| Unit | Tpy       | Tpy       | TPY    |
| PM   | 2.94      | 1.1466    | 4.0866 |

|      |        |          |       |
|------|--------|----------|-------|
| CO   | 1.25   | 0.08555  | 2.89  |
| SO2  | 0.244  | 0.137575 | 0.65  |
| NO2  | 5.74   | 0.39338  | 6.23  |
| VOC  | 0.0349 | 0.491    | 0.52  |
| HAPS | 0.119  | 0.000161 | 0.119 |

Reporting Source? No

### Potential Emissions

Actual emissions are based on limiting production and reflect potential emissions.

## H. OPERATING PERMIT OR PSD

The Title V Air Operating Permit (AOP) program applicability for the entire source has been reviewed.

The facility is not a Title V air operating permit source because post project PTE remains below Title V applicability thresholds and criteria. The source is considered a “**natural minor**”.

## I. AMBIENT TOXICS IMPACT ANALYSIS

The estimated potential toxic air pollutant (TAP) emissions at operating at 5 cases a day and no more than 1248 cases per year for each new or modified emission unit. The table below was provided by Yorke Engineering includes estimated potential emissions of all TAP and compares those to the Small Quantity Emission Rates (SQER) in WAC 173-460-150.

| TACs                | CAS      | Original Emission Factor | Emission Factor Units | Emission Factor Source | lb/yr    | lb/day   | lb/hr    | lb/day   | lb/hr    | lb/day   | lb/hr    | lb/day   | lb/hr    | SGER (lb/over-1000 hr/yr/giving period) | Average SQER (lb/over-1000 hr/yr/giving period) | Exceed SQER | Exceed AERMOD Input (lb/hr) | AERMOD Project alone? |
|---------------------|----------|--------------------------|-----------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|-------------------------------------------------|-------------|-----------------------------|-----------------------|
| 1,2,3,4,5,7,8-HxCDD | 58524400 | 5.8E-03                  | lb/Ton Charged        | NCEA                   | 4,70E-05 | 1,41E-05 | 2,38E-05 | 5,03E-05 | 7,75E-05 | 1,39E-05 | 4,27E-05 | 1,14E-05 | 4,70E-05 | 4,3E-05                                 | 4,3E-05                                         | 4,3E-05     | No                          | No                    |
| 1,2,3,4,5,7,8-HxCDF | 57523294 | 4.4E-03                  | lb/Ton Charged        | NCEA                   | 3,74E-05 | 1,20E-05 | 2,07E-05 | 4,80E-05 | 7,21E-05 | 1,20E-05 | 5,14E-05 | 1,37E-05 | 5,72E-05 | 5,2E-05                                 | 5,2E-05                                         | 5,2E-05     | No                          | No                    |
| 1,2,3,4,7,8-HxCDD   | 55673897 | 3.0E-03                  | lb/Ton Charged        | NCEA                   | 2,84E-05 | 9,34E-06 | 2,29E-05 | 6,12E-05 | 9,47E-05 | 2,34E-05 | 5,22E-05 | 1,39E-05 | 5,85E-05 | 1,38E-05                                | 4,3E-05                                         | 4,3E-05     | No                          | No                    |
| 1,2,3,4,7,8-HxCDF   | 59322286 | 3.17E-03                 | lb/Ton Charged        | NCEA                   | 3,95E-05 | 1,30E-05 | 3,80E-05 | 4,15E-05 | 6,41E-05 | 1,38E-05 | 3,54E-05 | 1,38E-05 | 3,96E-05 | 1,38E-05                                | 4,3E-05                                         | 4,3E-05     | No                          | No                    |
| 1,2,3,4,7,8-HxCDD   | 70540529 | 1,1E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,24E-05 | 5,33E-05 | 1,23E-05 | 3,20E-05 | 1,38E-05 | 4,3E-05                                 | 4,3E-05                                         | 4,3E-05     | No                          | No                    |
| 1,2,3,4,7,8-HxCDF   | 57117449 | 1,07E-03                 | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,21E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDD     | 57117449 | 4.8E-03                  | lb/Ton Charged        | NCEA                   | 1,38E-06 | 4,55E-07 | 6,93E-06 | 1,45E-05 | 2,17E-05 | 5,33E-05 | 1,34E-05 | 3,18E-05 | 1,34E-05 | 4,3E-05                                 | 4,3E-05                                         | No          | No                          |                       |
| 1,2,3,7,8-HxCDF     | 57117449 | 4.8E-03                  | lb                    |                        |          |          |          |          |          |          |          |          |          |                                         |                                                 |             |                             |                       |

since older units used chromium refractory bricks and cast refractory. The industry has moved away from that and has substituted with non-chromium/magnesium refractories to avoid having to treat used refractory as hazardous waste. I reviewed the SDS sheets for the refractory and confirmed that it does not contain chromium. A newer stack test report was included, and the results were in the same order of magnitude as these assumptions.

In the emission inventory provided, mercury was also shown to exceed the SQER but not the ASIL. The modeled results are also shown below. This value is based on the net daily change of 0.0068 lb Hg/day, which is the assumed average of two cases per day. The mercury is based per case rather than per pound due to it being mostly from dental work. This approach was established in Massachusetts and uses the AP-42 emission factor. From this source, "The release of mercury through the incineration of amalgam tooth fillings accounts for the majority of mercury emitted by crematoria." ([Massachusetts State Anthropogenic Mercury Emissions Inventory Update \(nescaum.org\)](http://nescaum.org), 2011). Based on this modeling, this tier 1 review would limit this crematory to 5 cases per day. The unit being decommissioned operated at 3 cases per day.

The modelling results are shown below.

**Table 1: TAP Emissions – Crematory**

| TAP    | Emission Factor           | Averaging Period | Net Daily PTE (lb/day) | Net Annual PTE (lb/year) | Modeling Input PTE (lb/hr) |
|--------|---------------------------|------------------|------------------------|--------------------------|----------------------------|
| Hg     | PSCAA (long-term >1 hour) | 24-hour          | 6.80E-3                | –                        | 2.83E-4                    |
| Cr(VI) | PSCAA                     | Annual           | –                      | 1.03E-3                  | 1.17E-7                    |

**Table 4: Cr(VI) Modeling Results**

| Pollutant | Emission Rate (lb/hr) | Averaging Period | Modeled Concentration ( $\mu\text{g}/\text{m}^3$ ) |          | ASIL Level ( $\mu\text{g}/\text{m}^3$ ) | Exceed ASIL? |
|-----------|-----------------------|------------------|----------------------------------------------------|----------|-----------------------------------------|--------------|
|           |                       |                  | PMI                                                | Resident |                                         |              |
| Cr(VI)    | 1.17E-7               | Annual           | 6.90E-7                                            | 5.00E-8  | 4.00E-6                                 | No           |

**Table 3: Hg Modeling Results**

| Pollutant | Emission Rate (lb/hr) | Averaging Period | Modeled Concentration ( $\mu\text{g}/\text{m}^3$ ) |          | ASIL Threshold | Exceed ASIL? |
|-----------|-----------------------|------------------|----------------------------------------------------|----------|----------------|--------------|
|           |                       |                  | PMI                                                | Resident |                |              |
| Hg        | 2.83E-4               | 24-Hour          | 2.40E-2                                            | 1.27E-3  | 3.00E-2        | No           |

| Parameter                              | Projected | Actual     | Comment                |
|----------------------------------------|-----------|------------|------------------------|
| Permitted Burner rating (MMBtu/hr)     | 1.8       | 1.7        |                        |
| Natural gas usage (mmscf/hr)           | 0.00176   | 0.00167    | calculated from rating |
| Daily Natural gas usage (mmscf/day)    | 0.0141    | 0.0068     | calculated             |
| Annual Natural gas usage (mmscf/yr)    | 3.52      | 0.44       | calculated             |
| Parameter                              | Projected | Actual     | Units                  |
| Avg Charge Wt                          | 200       | 135        | lb                     |
| Annual Charges                         | 1248      | 194        | cases/yr               |
| Annual Tons Charged                    | 124.8     | 13.095     | ton/year               |
| Average time per charge                | 1.6       | 1.35       | hours/case             |
| Annual Hours of Operation              | 1996.8    | 261.9      | hours/year             |
| Max Daily Charges                      | 5         | 3          | cases/day              |
| Daily Hours of Operation               | 8         | 4.05       | hours/day              |
| Max Daily Cremation Rate               | 0.5       | 0.2025     | ton/day                |
| Max Hourly Crem. Rating                | 125       | 100        | lb/hr                  |
| Max Hourly Crem. Rating                | 0.0625    | 0.05       | tons/hr                |
| Charges/Hour                           | 1         | 1          | for Mercury            |
| Parameter                              | Value     | Comment    |                        |
| %O <sub>2</sub> Emission Basis         | 7         | PSCAA      |                        |
| Fd - F-factor Natural Gas (dscf/mmbtu) | 8710      | Default    |                        |
| MW CO                                  | 28.01     | Default    |                        |
| MW NO <sub>x</sub>                     | 46        | Default    |                        |
| Molar Gas Volume at 68F (scf/lb-mole)  | 385.3     | Default    |                        |
| Natural Gas Fuel HHV (Btu/scf)         | 1020      | Default    |                        |
| Stack Temperature (F)                  | 800       | permit app |                        |
| Stack Exhaust Flow (wacfm)             | 1952      | permit app |                        |
| Stack Exhaust Flow (wscfm)             | 818.0     | calculated |                        |
| Stack Exhaust Flow (dscfm)             | 757.4     | calculated |                        |
| Stack Moisture (fraction)              | 0.08      | Assumed    |                        |
| MW Cr                                  | 51.9961   | Default    |                        |

The modelling was done assuming 5 cases per day that averaged 200 lbs per case, or 1,000 lbs per day, as well as 124.8 tons per year.

I also evaluated metals where a source test was provided, but was not included in the emission inventory. The source test report is included in section M. That source test indicates all metals should be below SQER, except for Hexavalent chromium previously discussed.

| TACs                          | CAS       | EF From Source Test | units | lb/year     | lb/day    | lb/hr | SQER Ave Period | SQER |
|-------------------------------|-----------|---------------------|-------|-------------|-----------|-------|-----------------|------|
| Cadmium                       | 7440439   | 0.000002            | lb/hr | 0.0039936   | 0.000016  | year  | 0.039           |      |
| Chromium, nonhexavalent       | 7440473   | 9.66667E-06         | lb/hr | 0.0193024   | 7.733E-05 | 24-hr | 3.70E-01        |      |
| Hexavalent chromium           | 18540299  | 4.44667E-06         | lb/hr | 0.008879104 | 3.557E-05 | year  | 0.00065         |      |
| Antimony as Antimony trioxide | 1309-64-4 | 1.66667E-06         | lb/hr | 0.003328    | 1.333E-05 | 24-hr | 0.015           |      |
| Arsenic                       | N/A       | 1.83333E-06         | lb/hr | 0.0036608   | 1.467E-05 | year  | 0.049           |      |
| Beryllium                     | N/A       | 2.16667E-07         | lb/hr | 0.00043264  | 1.733E-06 | year  | 0.068           |      |
| Cobalt                        | N/A       | 0.0000007           | lb/hr | 0.00139776  | 0.0000056 | 24-hr | 0.0074          |      |
| Manganese                     | N/A       | 6.33333E-05         | lb/hr | 0.126464    | 0.0005067 | 24-hr | 0.022           |      |
| Nickel                        | N/A       | 5.83333E-06         | lb/hr | 0.011648    | 4.667E-05 | year  | 0.62            |      |
| Selenium                      | N/A       | 6.16667E-06         | lb/hr | 0.0123136   | 4.933E-05 | 24-hr | 1.5             |      |

**J. APPLICABLE RULES & REGULATIONS**  
**Puget Sound Clean Air Agency Regulations**

**SECTION 5.05 (c):** The owner or operator of a registered source shall develop and implement an operation and maintenance plan to ensure continuous compliance with Regulations I, II, and III. A copy of the plan shall be filed with the Control Officer upon request. The plan shall reflect good industrial practice and shall include, but not be limited to, the following:

- (1) Periodic inspection of all equipment and control equipment;
- (2) Monitoring and recording of equipment and control equipment performance;
- (3) Prompt repair of any defective equipment or control equipment;
- (4) Procedures for startup, shut down, and normal operation;
- (5) The control measures to be employed to ensure compliance with Section 9.15 of this regulation; and
- (6) A record of all actions required by the plan.

The plan shall be reviewed by the source owner or operator at least annually and updated to reflect any changes in good industrial practice.

**SECTION 6.09:** Within 30 days of completion of the installation or modification of a stationary source subject to the provisions of Article 6 of this regulation, the owner or operator or applicant shall file a Notice of Completion with the Agency. Each Notice of Completion shall be submitted on a form provided by the Agency, and shall specify the date upon which operation of the stationary source has commenced or will commence.

**SECTION 9.03:** (a) It shall be unlawful for any person to cause or allow the emission of any air contaminant for a period or periods aggregating more than 3 minutes in any 1 hour, which is:  
(1) Darker in shade than that designated as No. 1 (20% density) on the Ringelmann Chart, as published by the United States Bureau of Mines; or  
(2) Of such opacity as to obscure an observer's view to a degree equal to or greater than does smoke described in Section 9.03(a)(1).  
(b) The density or opacity of an air contaminant shall be measured at the point of its emission, except when the point of emission cannot be readily observed, it may be measured at an observable point of the plume nearest the point of emission.  
(c) This section shall not apply when the presence of uncombined water is the only reason for the failure of the emission to meet the requirements of this section.

**Section 9.05:** (a) It shall be unlawful for any person to cause or allow the burning of combustible refuse except in a multiple chamber incinerator provided with control equipment.  
(b) It shall be unlawful for any person to cause or allow the operation of refuse burning equipment any time other than daylight hours.

**SECTION 9.09:** General Particulate Matter (PM) Standard. It shall be unlawful for any person to cause or allow the emission of particulate matter in excess of the following concentrations:  
Burning fuel other than wood: 0.05 gr/dscf

**SECTION 9.11:** It shall be unlawful for any person to cause or allow the emission of any air contaminant in sufficient quantities and of such characteristics and duration as is, or is likely to be,

injurious to human health, plant or animal life, or property, or which unreasonably interferes with enjoyment of life and property.

**SECTION 9.13:** It shall be unlawful for any person to cause or allow the installation or use of any device or use of any means designed to mask the emission of an air contaminant which causes detriment to health, safety or welfare of any person.

**SECTION 9.15:** It shall be unlawful for any person to cause or allow visible emissions of fugitive dust unless reasonable precautions are employed to minimize the emissions. Reasonable precautions include, but are not limited to, the following:

- (1) The use of control equipment, enclosures, and wet (or chemical) suppression techniques, as practical, and curtailment during high winds;
- (2) Surfacing roadways and parking areas with asphalt, concrete, or gravel;
- (3) Treating temporary, low-traffic areas (e.g., construction sites) with water or chemical stabilizers, reducing vehicle speeds, constructing pavement or rip rap exit aprons, and cleaning vehicle undercarriages before they exit to prevent the track-out of mud or dirt onto paved public roadways; or
- (4) Covering or wetting truck loads or allowing adequate freeboard to prevent the escape of dust-bearing materials.

**REGULATION I, SECTION 9.20(a):** It shall be unlawful for any person to cause or allow the operation of any features, machines or devices constituting parts of or called for by plans, specifications, or other information submitted pursuant to Article 6 of Regulation I unless such features, machines or devices are maintained in good working order.

#### **Washington State Administrative Code**

WAC 173-400-040(3): Fallout. No person shall cause or allow the emission of particulate matter from any source to be deposited beyond the property under direct control of the owner or operator of the source in sufficient quantity to interfere unreasonably with the use and enjoyment of the property upon which the material is deposited.

WAC 173-400-040(4): Fugitive emissions. The owner or operator of any emissions unit engaging in materials handling, construction, demolition or other operation which is a source of fugitive emission:

- (a) If located in an attainment area and not impacting any nonattainment area, shall take reasonable precautions to prevent the release of air contaminants from the operation.

WAC173-400-111(7): Construction limitations.

- (a) Approval to construct or modify a stationary source becomes invalid if construction is not commenced within eighteen months after receipt of the approval, if construction is discontinued for a period of eighteen months or more, or if construction is not completed within a reasonable time. The permitting authority may extend the eighteen-month period upon a satisfactory showing by the permittee that an extension is justified.

## Federal N/A

### K. PUBLIC NOTICE

This project does not meet the criteria for mandatory public notice under WAC 173-400-171(3). Criteria requiring public notice includes, but is not limited to, a project that exceeds emission threshold rates as defined in WAC 173-400-030 (e.g. 40 tpy NOx, VOC, or SO<sub>2</sub>, 100 tpy CO, 15 tpy PM<sub>10</sub>, 10 tpy PM<sub>2.5</sub>, 0.6 tpy lead), includes a WAC 173-400-091 synthetic minor limit, has a toxic air pollutant emission increase above the acceptable source impact level in WAC 173-460-150, or has significant public interest. This project is meeting the requirements of a first tier review according to WAC 173-460-080(3), which also requires a mandatory public notice.

A notice of application was posted on the Agency's website for 15 days. No requests or responses were received. A copy of the website posting is below:

#### New Construction Projects

| Company                                | Address                                                    | Project Description                                                                                  | Date Posted | Contact Engineer           |
|----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|----------------------------|
| Bonney-Watson Washington Memorial Park | <a href="#">16445 International Blvd, SeaTac, WA 98188</a> | Replacement of a Crematory unit with an American Crematory Equipment Co, Model A-250-Instant Access. | 5/10/23     | <a href="#">Carl Slimp</a> |

### L. RECOMMENDED APPROVAL CONDITIONS

#### Standard Conditions:

1. Approval is hereby granted as provided in Article 6 of Regulation I of the Puget Sound Clean Air Agency to the applicant to install or establish the equipment, device or process described hereon at the installation address in accordance with the plans and specifications on file in the Engineering Division of the Puget Sound Clean Air Agency.
2. This approval does not relieve the applicant or owner of any requirement of any other governmental agency.

#### Specific Conditions:

##### Throughput Limit:

3. The total mass cremated in the American Crematory Equipment Co, Model A-250 Human Crematory unit over any 12-month rolling period must not exceed 124.8 tons per year.
4. The owner or operator shall be limited to 1,000 pounds and 5 cases per calendar day (midnight to midnight).

**Emissions Limitations and Standards:**

5. The exhaust concentration of total particulate matter (filterable and condensable particulate matter) from American Crematory Equipment Co, Model A-250 Human Crematory unit shall not exceed 0.05 grains per dry standard cubic feet (gr/dscf) corrected to 7% oxygen (O<sub>2</sub>) as measured by EPA Method 5 as modified by Puget Sound Clean Air Agency Board Resolution 540 dated August 11, 1983.
6. The exhaust concentration of carbon monoxide (CO) from the American Crematory Equipment Co, Model A-250 Human Crematory unit shall not exceed 50.0 ppm, on a dry, volumetric basis corrected to 7% O<sub>2</sub> as measured by EPA Methods 1, 3A and 10 from Appendix A of 40 CFR Part 60.
7. The exhaust concentration of nitrogen oxides (NO<sub>x</sub>) from the American Crematory Equipment Co, Model A-250 Human Crematory unit shall not exceed 140 ppm, on a dry, volumetric basis corrected to 7% O<sub>2</sub> as measured by EPA reference methods 1, 3A and 7E from Appendix A of 40 CFR Part 60.
8. Visible emissions from the American Crematory Equipment Co, Model A-250 Human Crematory unit may exceed 5 percent opacity for up to 3 minutes in any one hour. At all other times, visible emissions may not exceed 5 percent opacity. Compliance with this condition is determined using Ecology Method 9A.

**Operational Limits:**

9. The exhaust stack of the American Crematory Equipment Co, Model A-250 Human Crematory unit shall be vertical and unobstructed.
10. This cremation unit must only be utilized for human remains and their corresponding containers. No other material shall be incinerated in the primary chamber. Incinerated containers must not contain chlorinated plastics.
11. The secondary chamber of the American Crematory Equipment Co, Model A-250 Human Crematory unit must be heated to a minimum temperature of 1,600 degrees Fahrenheit (°F) prior to igniting the primary chamber, and the operating temperature in the secondary chamber (afterburner) must be maintained at or above 1600 °F for the entirety of each cremation cycle. The secondary chamber must be at 1600 °F well at least 30 minutes prior to charging the primary chamber.
12. The American Crematory Equipment Co, Model A-250 Human Crematory unit must operate with a monitoring system that measures the temperature in the primary and secondary chambers, in degrees Fahrenheit, for the entirety of each cremation cycle. Temperature data for the secondary chamber must be recorded continuously (or sampled at intervals no greater than 15 seconds and recorded as 1 minute averages) for the entirety of each cremation cycle. The temperature monitoring system must be interlocked with an audible alarm such that if the temperature in the secondary chamber falls below 1,600 degrees Fahrenheit, the alarm will sound at which time immediate corrective action must be taken to correct the problem.

13. The American Crematory Equipment Co, Model A-250 Human Crematory unit must operate with a monitoring system that measures opacity in the exhaust stack, as a percentage. The opacity monitoring system must be interlocked with an audible alarm such that if the opacity in the exhaust stack exceeds 5 percent, the alarm will sound at which time immediate corrective action must be taken to correct the problem or cease operation of the crematory until the problem is corrected.
14. All temperature and opacity monitoring system components must be maintained, repaired, and replaced in accordance with the manufacturer's recommendations, instructions, and operating manuals.
15. The owner or operator shall annually test or replace the temperature monitoring system thermocouples or pyrometers. If performed, the test shall consist of either a physical or electronically simulated comparison and shall follow manufacturer specifications. The results of the test readings must be within +/- 16 degrees F. If the results of the test readings exceed +/- 16 degrees of the reference value, the thermocouple must be replaced or adjusted to read within +/- 16 degrees of the reference value.

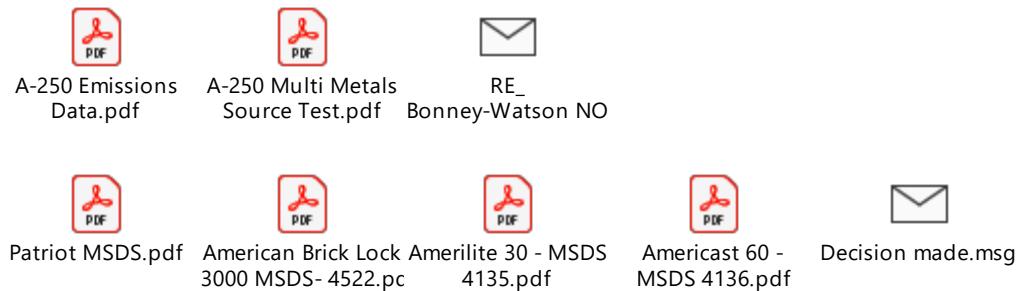
**Compliance Demonstration:**

16. Initial compliance with Condition 5 must be demonstrated by testing the American Crematory Equipment Co, Model A-250 Human Crematory unit's stack within 180 days of starting-up the cremation unit in accordance with Section 3.07 of Puget Sound Clean Air Agency's Regulation I. Compliance testing must be conducted using EPA Method 5 as modified by Puget Sound Clean Air Agency's Board Resolution 540 dated August 11, 1983. Compliance testing must be conducted during the entire duration of case and must consist of at least three separate test runs, each with a minimum duration of 1 hour. One Ecology Method 9A observation of at least one hour duration shall be conducted concurrently with each of the particulate sampling runs to demonstrate initial compliance with Condition 8.
17. Initial compliance with Condition 6 must be demonstrated by testing the American Crematory Equipment Co, Model A-250 Human Crematory unit's stack within 180 days of starting-up the cremation unit in accordance with Section 3.07 of Puget Sound Clean Air Agency's Regulation I. Compliance testing must be conducted using EPA Methods 1, 3A, and 10. Compliance testing must be conducted during the entire duration of case and must consist of at least three separate test runs, each with a minimum duration of 1 hour.
18. Initial compliance with Condition 7 must be demonstrated by testing the American Crematory Equipment Co, Model A-250 Human Crematory unit's stack within 180 days of starting-up the cremation unit in accordance with Section 3.07 of Puget Sound Clean Air Agency's Regulation I. Compliance testing must be conducted using EPA Methods 1, 3A, and 7E. Compliance testing must be conducted during the entire duration of case and must consist of at least three separate test runs, each with a minimum duration of 1 hour.

19. If requested by the Agency, ongoing compliance with Conditions 5, 6, and 7 must be demonstrated by testing the American Crematory Equipment Co, Model A-250 Human Crematory unit in the timeframe requested by the Agency and in accordance with Section 3.07 of Puget Sound Clean Air Agency's Regulation I.

**Recordkeeping Requirements:**

20. All records required by this Order of Approval must be maintained for at least two years.
21. The following records shall be kept onsite, updated within 30 days at the end of each month for at least two years from the date of generation, and be made readily available to Agency personnel upon request:
  - a. Compliance test reports.
  - b. Thermocouple or pyrometer calibration test reports, including the date and results of each test, the test method used, and a record of who performed the test. If any gauge is replaced, the owner or operator shall keep a record of the date it was replaced and who replaced it.
  - c. All temperature monitoring data.
  - d. Total cremated mass in pounds for each month and the resulting 12-month rolling total. The 12-month rolling total is defined as the sum of the current month and the previous eleven (11) months.
  - e. Total number of cremations conducted each calendar day.
  - f. Operating time and weight per case.
  - g. A log showing corrective actions taken to maintain the secondary chamber temperature at or above 1,600°F.
  - h. A log showing corrective actions taken to maintain the opacity in the exhaust stack at or below 5 percent.


**Reporting Requirements:**

22. For every compliance test required by this Order of Approval, a test notification must be submitted to the Puget Sound Clean Air Agency as required by Regulation I, Section 3.07. Each notification must clearly state whether modifications or alternatives to a required test method are planned.
23. A test plan must be submitted to the Puget Sound Clean Air Agency at least 30 days before conducting a test to demonstrate compliance with Conditions 5, 6, and 7. The test plan must include the following:
  - a. Description of all test methods.
  - b. Description of modifications or alternatives to a required test method.
  - c. Quality assurance and control procedures.

d. Procedures and intent to monitor temperature and opacity during each test run.  
e. Procedures and intent to calculate total mass cremated during the entire test.

24. This NOC will cancel and supersede NOC 10187 upon installation of the American Crematory Equipment Co, Model A-250 Human Crematory. The owner or operator may not operate the American Crematory Equipment Co, Model A-250 Human Crematory unit until the Matthews Power-Pak II, Power-Pak II Cremator, unit has been removed from service.

#### **M. CORRESPONDENCE AND SUPPORTING DOCUMENTS**



#### **N. REVIEWS**

| Reviews         | Name           | Date                |
|-----------------|----------------|---------------------|
| Engineer:       | Carl Slimp     | 8/4/2023, 8/14/2023 |
| Inspector:      | James Moore    | 8/4/2023            |
| Second Review:  | John Dawson    | 8/7/2023, 8/14/2023 |
| Applicant Name: | Laura Frampton | 8/15/2023           |