

July 7, 2023
Project No. 04223001.20

Mr. Ralph Munoz
Permitting Engineer
Puget Sound Clean Air Agency
1904 3rd Avenue, Suite 105
Seattle, WA 98101

Subject: **Notice of Construction (NOC) Application #12301, Revision**

Dear Mr. Munoz:

SCS Engineers (SCS) is submitting this revised Notice of Construction (NOC) application, on behalf of Pierce County Recycling, Composting, and Disposal, LLC (dba LRI), for the installation of a temporary flare, dedicated blower and sulfur treatment system at the LRI 304th Street Landfill in Graham, Washington.

In November 2022, LRI submitted the first version of this application. PSCAA issued several requests for additional information. This revised NOC application addresses many of the issues you raised in your review of earlier drafts of the application. For instance, this version includes a SEPA checklist for the temp flare project, a top down BACT analysis for control of SO₂ from the temp flare project and a revised air toxics emissions analysis showing that that the net emissions increase from the project will not exceed the Small Quantity Emission Rate for any toxic air pollutant. Other issues raised in your comments, e.g. issues related to the capacity of the landfill and the projected peak landfill gas generation rate during the life of the landfill, will be reserved for the NOC application for an enclosed combustor to replace the temporary flare.

On February 15, 2023 LRI submitted an NOC application for the enclosed combustor. LRI's goal is to permit and install the enclosed combustor as soon as possible. We plan to revise that application to address the same issues that PSCAA raised in comments on this NOC application.

In comments on previous drafts of the temp flare NOC application the Agency presented different views on whether the sulfur scrubbing system described in this application must have the capacity to treat landfill gas routed to the adjacent electric power generating plant owned and operated by Archaia. LRI views that issue as unrelated to this application, which seeks only to permit a temporary flare for a roughly two year operating life. LRI anticipates that the revised NOC application for the enclosed combustor will model growth in the volume of landfill gas over the projected life of the landfill.

Puget Sound Clean Air Agency
July 7, 2023

Please contact Karam Singh at 321-370-3173 or by email at KSingh@scsengineers.com should you have any questions about this application.

Sincerely,

Jeff Leadford, PE (OR)
Project Manager
SCS Engineers

Karam Singh, PE
Project Director
SCS Engineers

List of Attachments:

- Attachment A PSCAA NOC Forms
- Attachment B Project Description
- Attachment C Process Flow Diagram
- Attachment D Emissions Calculations
- Attachment E BACT Analysis
- Attachment F Flare Design Documents and Location
- Attachment G Sulfur and Volatile Organics Sampling Laboratory Reports
- Attachment H SEPA Checklist

Attachment A PSCAA NOC Forms

AGENCY USE ONLY	NOC#:	REG#:	Date Fee Pd:	Eng. Assigned:
--------------------	-------	-------	--------------	----------------

1904 3rd Ave #105, Seattle, WA 98101

206-343-8800

pscleanair.gov

Clean Air Agency

NOTICE OF CONSTRUCTION APPLICATION FOR ORDER OF APPROVAL

The following information must be submitted as part of this application packet before an Agency engineer is assigned to review your project.

SECTION 1. FACILITY INFORMATION

Business Name

Equipment Installation Address

City

State

Zip

Is the business registered with the Agency at this equipment installation address?

Yes. Current Registration or AOP No. _____

No, not registered

Unknown

Business Owner Name

Business Mailing Address

City

State

Zip

Type of Business

Is the installation address located within the city limits?

Yes No

[NAICS Code](#)

NAICS Description

Contact Name (for this application)

Phone

Email

Description for Agency Website Detailed project description is provided under Attachment B.

Provide a 1-2 sentence simple description of this project. See examples www.pscleanair.gov/176

SECTION 2: REQUIRED APPLICATION PACKET ATTACHMENTS

1) **Process flow diagram** Process flow diagram is provided under Attachment C.

YES, attached. NO, not attached. This application is incomplete

2) **Emission estimate.** Emission rate increases for all pollutants.

Emission Calculations are provided under Attachment D with supplemental information provided under Attachments E, F and G.

YES, attached. NO, not attached. This application is incomplete.

3) **Environmental Checklist** (or a determination made by another Agency under the State Environmental Policy

Act) www.pscleanair.gov/DocumentCenter/View/170

Environmental SEPA Checklist is provided under Attachment H.

YES, attached. NO, not attached. This application is incomplete.

NOTICE OF CONSTRUCTION APPLICATION FOR ORDER OF APPROVAL

SECTION 2: REQUIRED APPLICATION PACKET ATTACHMENTS (CONT)

4) Attach **equipment form**(s) applicable to your operation. Forms are available online at www.pscleanair.gov/179
 YES, attached. NO, not attached. This application is incomplete. **PSCAA NOC Forms (including this NOC Form) are provided under Attachment A.**

5) **Detailed Project Description** **Detailed project description is provided under Attachment B.**
 The project description must include a detailed description of the project, a list of process and control equipment to be installed or modified, a description of how the proposed project will impact your existing operations (if applicable), and measures that will be taken to minimize air emissions.
 Detailed description of the proposed project included in packet?
 YES, attached. NO, not attached. This application is incomplete.

6) **\$1,550 filing fee** (nonrefundable) **Payment was made with the initial submittal - this is a re-submittal.**
 PAY BY CHECK – Attached and made payable to **Puget Sound Clean Air Agency**
 PAY BY CREDIT – Accounting technician will contact person identified below for payment information

Contact Name:

Contact Number:

SECTION 3: PROCESS AND CONTROL EQUIPMENT (attach additional pages if necessary)

Process Equipment		Does this equipment have air pollution control equipment?	Air Pollution Control Equipment	
# of Units	Equipment Type & Design Capacity		# of Units	Equipment Type
1	Landfill Gas Flares	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	1	H2S Reduction System
		<input type="checkbox"/> Yes <input type="checkbox"/> No		
		<input type="checkbox"/> Yes <input type="checkbox"/> No		
		<input type="checkbox"/> Yes <input type="checkbox"/> No		

SECTION 4: CERTIFICATION STATEMENT

I, the undersigned, certify that the information contained in this application and the accompanying forms, plans, specifications, and supplemental data described herein is, to the best of my knowledge, accurate and complete.

Signature

Kevin Green

Printed Name

7/7/2023

Date

District Manager

Title

SECTION 5: APPLICATION SUBMITTAL

EMAIL application and attachments to:

NOC@pscleanair.gov

-OR-

MAIL application, payment, and attachments to:

Puget Sound Clean Air Agency

ATTN: NOC Application Submittal

1904 3rd Ave, Suite 105 – Seattle, WA 98101

PUGET SOUND CLEAN AIR AGENCY

Additional Notice of Construction Application Requirements for

FLARES

General

Equipment or Process Being Controlled [*Specify the source(s) of the contaminants to be controlled. If the source(s) are also new, complete the applicable permit forms*]

Identify which of the following categories the project fits into:

1. **New Construction** (*New construction also includes existing, unpermitted equipment or processes*)
2. Reconstruction (*Reconstruction means the replacement of components of an existing facility to such an extent that the fixed capital cost of the new components exceeds 50% of the fixed capital cost that would be required to construct a comparable entirely new facility*)
3. Modification (*Modification means any physical change in, or change in the method of operation of, a source, except an increase in the Hours of Operation or production rates (not otherwise prohibited) or the use of an alternative fuel or raw material that the source is approved to use under an Order of Approval or operating permit, that increases the amount of any air contaminant emitted or that results in the emission of any air contaminant not previously emitted*)
4. Amendment to Existing Order of Approval Permit Conditions

Estimated Hours of Operation (hr/day, day/wk, wk/yr) [*Estimate the hours of operation for the new flare - not necessarily the entire facility*] **24 hr/day, 7 day/week, 52 week/year**

Estimated Installation Date [*Estimate the date when the new flare will be put into service*] **2023**

Waste Gas Stream Characteristics [*If the heat content of the gas stream is <300 Btu/scf (or <200 Btu/scf if nonassisted), supplementary fuel will be required*]

Flowrate (acf m) [*Specify the airflow in actual cubic feet per minute*] **2,200 scfm**

Temperature (°F) [*Specify the temperature of the waste gas going to the flare in degrees Fahrenheit.*] **120 deg. F (approximate with seasonal variations)**

Pollutant Concentrations (lb/hr or ppmv of each pollutant) [*Specify the pollutant concentrations in the waste gas going to the flare in pounds per hour or parts per million by volume*] See the **Emission Calculations provided as Attachment C.**

Heat Content (Btu/scf) [*Specify the heat content of the waste gas going to the flare in British thermal units per standard cubic foot.*] **500 btu/scf at 50% Methane**

Oxygen (% by volume) [*Specify the oxygen content of the waste gas going to the flare in percent by volume*] **0.1 to 3 percent by volume**

Molecular Weight (lb/lb-mol) [Specify the volume weighted average molecular weight of the waste gas in pounds per pound-mole] **30.03 lb/lb-mol**

Design [Most design information is available from the manufacturer or vendor. Submittal of a brochure, scale drawing or process and instrumentation diagram will facilitate the review of the permit application] See design documents attached

Make & Model [Specify the manufacturer and model of the flare - not the serial number] **Parnel 2,200 scfm Skid-Mounted Utility Landfill Flare System**

Flare Height (ft) [Specify the height of the flare tip above ground - not above sea level] **33 Feet**

Type of Assist System [Specify steam assisted, air assisted, or unassisted] **Unassisted**

Type of Ignition System [Specify instantaneous spark, continuous spark or natural gas pilot. If pilot lights are used, specify the number of pilots] **Propane Pilot**

Type of Monitor to Determine the Presence of a Pilot Flame [Specify 'none', thermocouple, infrared, or optical sensor] **Thermocouple**

Cross-Sectional Area of Flare Tip (ft²) [Specify the unobstructed area of the flare tip in square feet] **12 inch Diameter Flare Tip = 0.785 ft²**

Flared Gas Exit Velocity (ft/s) [Specify the velocity at which the flared gas exits the flare in feet per second] **60 ft/sec**

For Steam Assisted Flares, the Steam Flowrate (lb/min) [Specify the amount of any steam supplied to the flare in pounds per minute] - **Not Applicable**

For Flares with Supplementary Fuel, the Type of Fuel and its Flowrate (scfm) [Specify the amount of any supplementary fuel supplied in standard cubic feet per minute] **No Supplementary Fuel**

Method Used to Design/Size the Flare [Specify the method used to select this design and size of flare. If design calculations were performed, they should be submitted. If the design and sizing was based on similar (successful) applications, list the owners and the city and state where they are located] **Size of flare in scfm is based on U.S. EPA LandGEM software models showing projected landfill gas production from landfill in the coming years. Models are submitted to PSCAA Semi-annually in the required compliance reports.**

Distance to Nearest Property Line (ft) [Specify the distance from the base of the stack to the nearest property line] **750 feet**

Height, Length and Width of Buildings (ft) [Specify the approximate dimensions of any buildings that are >40% of the stack height and are located within 5 building heights from the stack] **No buildings within this range**

Operation and Maintenance Describe Preventive Maintenance: **This temporary flare will be operated and maintained per manufacturer (Perennial Biogas) recommendations. Landfill gas data will be monitored routinely per LRI Landfill's GCCS Operations and Maintenance Plan.**

Attachment B

Project Description

DETAILED PROJECT DESCRIPTION

This application proposes to permit a temporary flare with a manufacturer rated capacity of 3,000 standard cubic feet per minute (scfm), to remain in operation for approximately two years. Design details for this temporary flare system are provided under Attachment F.

Due to limitations on the volume of landfill gas (LFG) generated by the LRI Landfill during this period, the volume of gas processed by the temporary flare will not exceed 2,200 scfm on a 12-month rolling basis. This 2,200 scfm maximum average flow is a conservative flowrate based on actual data from 2022 and a 12% annual increase that is expected in years 2023 and 2024 per the LFG projection model for the landfill and recent 2023 LFG data. Table 1 below shows this calculation breakdown.

Table 1. Temporary Flare Predicted Flows

Years	12-Month Rolling Average LFG Flow (scfm)			Temporary Flare @55% of Total LFG routed to flares (scfm)
	Total Flares	LFGTE	Total LRI	
2022	2,988	1,436	4,425	
2023 ²	3,356	1,600	4,956	1,846
2024	3,950	1,600	5,550	2,173

The flare is temporary in nature and will be operational for a maximum period of approximately 24-months, which is why Table 1 only shows flow out to end of year 2024. Within this 24-month timeframe, LRI intends to permit, procure and install a permanent enclosed combustion flare.

A process flow diagram is included in Attachment C outlining the conveyance of LFG from the gas collection and control system (GCCS) field to the installed sulfur treatment system (explained in detail below), the existing flare, temporary flare, and the separately permitted LFGTE plant. The temporary flare project also includes a dedicated blower to route LFG through the sulfur treatment system to the temporary flare. The blower is powered by electricity and will not contribute to emissions.

Sulfur Management/Treatment System

Current Sulfur Concentration-Loading

Recent analysis indicates that Total Residual Sulfur (TRS) and associated Hydrogen Sulfide (H₂S) concentrations in the LFG have increased at the facility.

¹ Based on available data, temporary flare handles 45% to 55% of the total flow routed to the flares. We have conservatively assumed 55% of *Total Flares* flow will be routed to the temporary flare until end of 2024.

² Projected Total flow rate for years 2023 and 2024 is calculated using 2022 actual Total flow and a conservative 12% annual increment. Based on available 2023 data, 1,600 scfm LFGTE flowrate is assumed for years 2023 and 2024.

TRS concentrations from samples collected and analyzed in an accredited laboratory from July 2022 through June of 2023 are shown in Table 2. The most recent laboratory analysis reports from June 2023 is provided under Attachment G. Averaging available data points for the last 12-month period yields a TRS value of approximately 2,000 parts per million by volume (ppmv) as shown in Table 2.

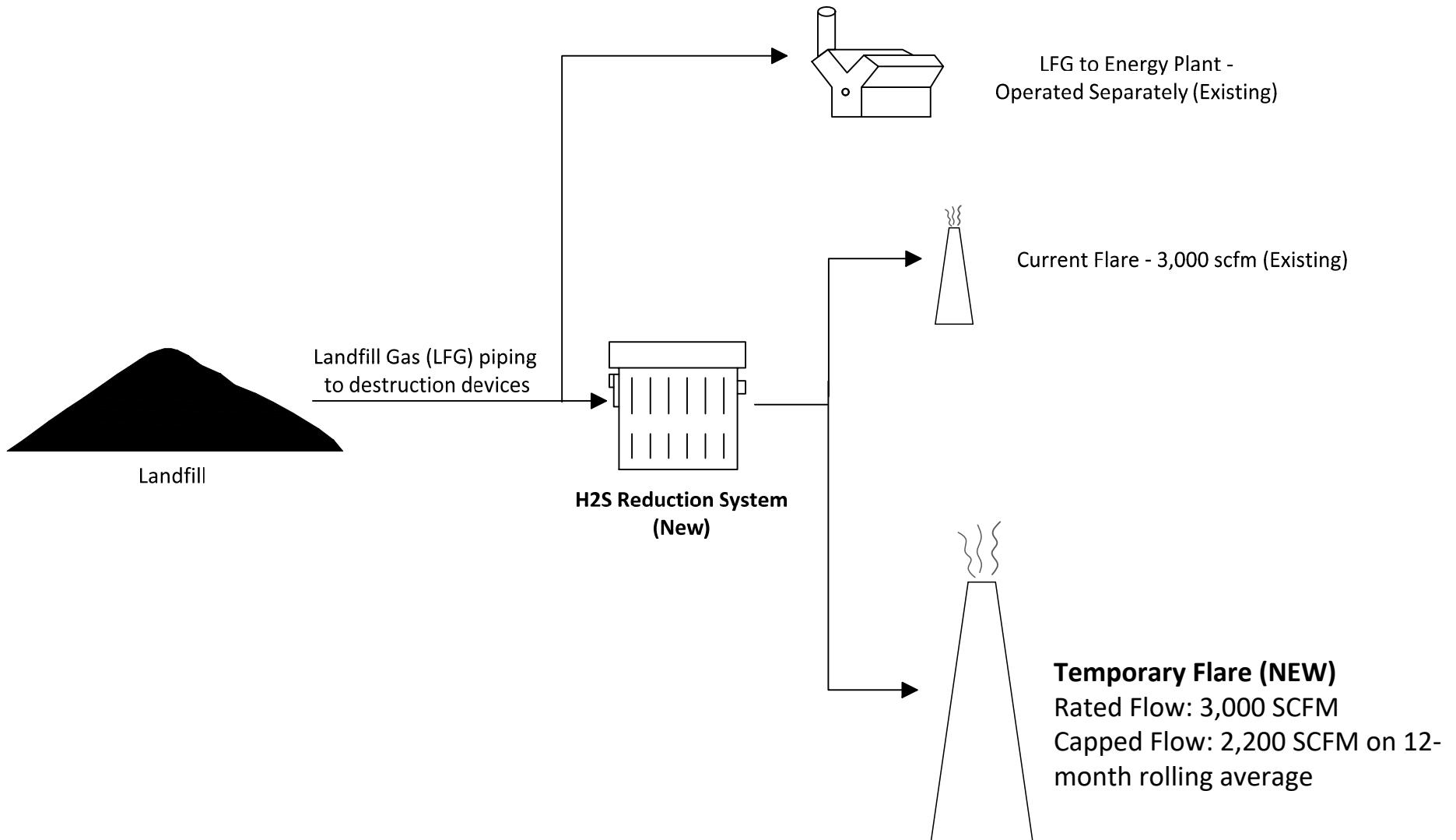
Table 2. Historical TRS Data

Date	TRS Reading in ppmv	Source	Comments
7/20/2022	998	Lab Analysis	TRS - ASTM D5504
9/7/2022	2,563	Lab Analysis	TRS - ASTM D5504
10/18/2022	2,729	Lab Analysis	TRS - ASTM D5504
11/17/2022	2,365	Lab Analysis	TRS - ASTM D5504
12/21/2022	1,895	Lab Analysis	TRS - ASTM D5504
1/24/2023	1,600	Lab Analysis	TRS - ASTM D5504
2/15/2023	1,591	Lab Analysis	TRS - ASTM D5504
3/28/2023	1,774	Lab Analysis	TRS - ASTM D5504
5/1/2023	1,663	Lab Analysis	TRS - ASTM D5504
5/16/2023	2,382	Lab Analysis	TRS - ASTM D5504
5/25/2023	725	Lab Analysis	TRS - ASTM D5504
5/31/2023	2,004	Lab Analysis	TRS - ASTM D5504
6/6/2023	1,915	Lab Analysis	TRS - ASTM D5504
6/13/2023	2,770	Lab Analysis	TRS - ASTM D5504
6/21/2023	2,657	Lab Analysis	TRS - ASTM D5504
6/27/2023	2,404	Lab Analysis	TRS - ASTM D5504
Average	2,002	July 2022 to June 2023 Period	

Sulfur Treatment

LRI Landfill has implemented a H₂S reduction system that uses solid scavenger type media to remove H₂S from the LFG stream. The LFG flow is directed through vessels that contain solid scavenger media. The media is a pelletized type media that typically contains a form of iron hydroxide to react with the H₂S in the gas stream and produce elemental sulfur and water as a byproduct.

LRI has selected the use of Vacuum Scrubber Vessels. Four vessels were installed in parallel and each receives a portion of the LFG stream for treatment. LRI has utilized Darco BG-1 activated carbon media for use inside the vessels. Darco BG-1 is manufactured by Norit. Darco BG-1 is granular activated carbon, developed for removing H₂S from biogas streams, that uses the adsorption process to remove H₂S from the LFG stream. After the volume of media in the vessels is used up to treat H₂S, the used media is removed from the vessels to be disposed of in the landfill and fresh media is replaced in the vessels. A different media may be used in the future, as performance and costs vary over time and a more economical option may become available. Regardless of the specific type of media selected, the system is designed to meet the limits established through the BACT analysis presented under Attachment E.


The process flow diagram in Attachment C further outlines the conveyance of LFG from the GCCS field to existing flare, temporary flare, and the separately permitted LFG to Energy (LFGTE) plant. The location of the H₂S reduction system is also included in the diagram.

Attachment C

Process Flow Diagram

LRI 304th St. Landfill
Notice of Construction: Temporary Flare
Process Flow Diagram

Attachment D

Emissions Calculations

Potential Annual Emission calculations are presented in Tables 1 and 2. Emission calculations have been performed using EPA's AP-42 guidance and as detailed in Tables 1 and 2. Supplemental information referenced/utilized in these emission calculations is provided under Attachments E through G.

Table 1 lists pertinent assumptions (e.g., capped 12-month rolling average flowrate for the flare [i.e., 2,200 scfm], methane content of landfill gas etc.) and presents Non-Methane Organic Compounds (NMOC), Volatile Organic Compounds (VOC), Carbon Monoxide (CO), Nitrogen Oxides (NOX), Particulate Matter and Sulfur Dioxide (SO₂) emissions per AP-42, Chapter 2.4 methodology.

Table 2 presents emission calculations associated with Toxic Air Pollutants/Compounds (TAPs or TACs). The most recent lab analysis data (from June 2023) was used to calculate TAP emissions associated with this flare capacity upgrade. The June 2023 data for Toxics Analysis method TO15 is provided in Attachment G. When comparing TAPs emissions to the Small Quantity Emission Rate (SQER), a netting basis is allowed to deduct an emission source that was removed and replaced with a new source per RCW 70.94, Chapter 173-460 WAC¹. However, only actual emissions from the removed source can be discounted. In this case, the temporary flare is replacing a 1,500 scfm capacity permanent flare that was taken out of service in December 2022. The actual flow at the replaced flare for the previous 12 months, from December 2021 through November 2022 was 956 scfm on average. Therefore, the effective flowrate that we are comparing to the SQER is 2,200 minus 956, or 1,244 scfm. No TAP exceeded the SQER, and thus, no modeling is required.

¹ Guidance for emissions netting is obtained from the Department of Ecology's Air Quality Program Policy titled "AQP-POL-2019 Evaluating Equipment Replacement" and dated August 2019 (please refer to Page 5 of this policy).

Potential Annual Emissions
Table 1
Temporary Flare, LRI Landfill, Pierce County, Washington

Prepared By:	JML	6/2/2023
Reviewed By:	KS	7/6/2023

	Maximum Flow Rate to Temporary Flare scfm	Total Monthly Flow m ³	Total Monthly Flow ft ³	Heat Content		Heat Release MMBTU/Hr
				BTU	MMBTU	
January	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
February	2,200	2,691,589 m ³	95,040,000 ft ³	45,239,040,000	45,239	62.8
March	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
April	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
May	2,200	2,512,150 m ³	88,704,000 ft ³	42,223,104,000	42,223	62.8
June	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
July	2,200	2,691,589 m ³	95,040,000 ft ³	45,239,040,000	45,239	62.8
August	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
September	2,200	2,691,589 m ³	95,040,000 ft ³	45,239,040,000	45,239	62.8
October	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
November	2,200	2,781,308 m ³	98,208,000 ft ³	46,747,008,000	46,747	62.8
December	2,200	2,691,589 m ³	95,040,000 ft ³	45,239,040,000	45,239	62.8

Total landfill gas consumption = 32,747,664 m³/yr 1,156,320,000 ft³/yr 550,408,320,000 550,408 754.0
 Methane consumption (assuming 50% of LFG is CH₄), scfm = 16,373,832 m³/yr 578,160,000 ft³/yr
 average = 2,200
 gas temperature = 25 degrees C
 298 degrees K

Compound	Molecular Weight (gram/mol)	Concentration (ppmv)	Uncontrolled Emissions Estimate (Q _p)	Uncontrolled Emission Rate (UM _p)	Emission Rate (98% destruction for NMOC/VOC)	Total Emissions (tons/yr)
			(m ³ /yr)	(Mg/yr)	(Mg/yr)	
Non-Methane Organic Compounds (NMOC)	86.18	595	19,484.9	68.7	1.37	1.5
Volatile Organic Compounds (VOCs) = NMOC	86.18	595	19,484.9	68.7	1.37	1.5
Carbon Monoxide (CO)	28.01	—	—	—	—	85.3
Nitrogen Oxides (NO _x)	—	—	—	—	—	18.7
Particulate Matter , 10 µm (PM10)	—	—	—	—	4.4	4.9
Sulfur Dioxide (SO ₂) based on H ₂ S conc.	64.00	300	9,824.3	25.72	25.7	28

Notes:

$$Q_p = 2 * Q_{CH4} * C_p / 1 \times 10^6$$

$$UM_p = Q_p * [(MW_p * 1 atm) / ((8.205 \times 10^{-5}) * (1000g/Kg) * (273 + T ^\circ C))]$$

CO = 0.31 lb / million BTU , based on manufacturer's data

 NO_x = 0.068 lb / million BTU , based on manufacturer's data

PM10 = 270 kg / million scm methane discharged, based on AP-42, Table 2.4-4

NMOC/VOC = 595 ppmv from AP-42 Table 2.4-2

 SO₂/TRS = Sulfur treatment system will reduce TRS in the landfill gas to annual average 300 ppmv.

TABLE 2: POTENTIAL TAP EMISSIONS PART 1

CAS #	Pollutant Common Name	MW (g/mol)	AP-42 EF (ppmv)	WIAC-1 (ppmv)	WIAC 2 (ppmv)	June 2023 LFG Test Results		Source	Uncontrolled Emissions Estimate (Q _p) (m3/yr)	Uncontrolled Emission Rate (UM _p) (Mg/yr)	Controlled Emission Rate after combustion (98% destruction) (Mg/yr)	Total Emissions (tpy)	Total Emissions (lb/yr)	
						ND	EF To Use (ppmv)							
71-55-6	1,1,1-Trichloroethane	133.41	0.48	0.168	0.168	ND	0.168	WIAC	5.50	3.00E-02	6.00E-04	6.62E-04	1.32	
79-00-5	1,1,2-Trichloroethane					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
79-34-5	1,1,2-Tetrachloroethane	167.85	1.11	0.07	0.005	ND	0.005	WIAC	0.16	1.12E-03	2.25E-05	2.48E-05	0.05	
75-34-3	1,1-Dichloroethane	98.97	2.35	0.741	0.741	ND	0.741	WIAC	24.27	9.82E-02	1.96E-03	2.16E-03	4.33	
75-35-4	1,1-Dichloroethene	96.94	0.2	0.092	0.092	ND	0.092	WIAC	3.01	1.19E-02	2.39E-04	2.63E-04	0.53	
120-82-1	1,2,4-Trichlorobenzene					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
95-63-6	1,2,4-trimethylbenzene	120.19				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
106-93-4	1,2-Dibromoethane	187.88	0.001	0.046	0.005	ND	0.005	WIAC	0.16	1.26E-03	2.52E-05	2.77E-05	0.06	
107-06-2	1,2-Dichloroethane	98.96	0.41	0.12	0.12	ND	0.12	WIAC	3.93	1.59E-02	3.18E-04	3.51E-04	0.70	
78-87-5	1,2-Dichloropropane	112.99	0.18	0.023	0.023	ND	0.023	WIAC	0.75	3.48E-03	6.96E-05	7.67E-05	0.15	
106-99-0	1,3-Butadiene					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
542-75-6	1,3-Dichloropropene					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
108-67-8	1,3,5-trimethylbenzene	120.19				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
106-46-7	1,4-Dibromobenzene	147	0.21	1.607	1.448	ND	1.448	WIAC	47.42	2.85E-01	5.70E-03	6.28E-03	12.57	
123-91-1	1,4-Dioxane (1,4-Diethylene oxide)					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
540-84-1	2,2,4 trimethyl pentane	114.23				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
591-78-6	2-hexanone	100.16				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
67-63-0	2-Propanol	60.11	50.1	7.908	7.908	13.1	13.1	2023 LFG Testing	428.99	1.05E+00	2.11E-02	2.32E-02	46.49	
622-96-8	4-ethyltoluene	120.19				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
67-64-1	Acetone	58.08	7.01	6.126	7.075	21.7	21.7	2023 LFG Testing	710.62	1.69E+00	3.38E-02	3.72E-02	74.41	
107-13-1	Acrylonitrile	53.06	6.33	<0.036		ND	0.036	WIAC	1.18	2.56E-03	5.12E-05	5.64E-05	0.11	
107-05-1	Allyl chloride					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
80-56-8	a-pinenes	136.23				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
71-43-2	Benzene	78.11	1.91	0.972	0.972	4.97	4.97	2023 LFG Testing	162.76	5.20E-01	1.04E-02	1.15E-02	22.92	
100-44-7	Benzyl chloride					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
18172-67-7	b-pinene	136.23				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
75-27-4	Bromodichloromethane	163.83	3.13	0.311	<0.264	ND	0.311	WIAC	10.18	6.82E-02	1.36E-03	1.50E-03	3.01	
75-25-2	Bromoform					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
1016-97-8	Butane	58.12	5.03			ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
124-38-9	Carbon Dioxide					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
75-15-0	Carbon disulfide	76.13	0.58	0.32	0.221	ND	0.221	WIAC	7.24	2.25E-02	4.51E-04	4.97E-04	0.99	
630-08-0	Carbon monoxide	28.01	141			ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
56-23-5	Carbon tetrachloride	153.84	0.004	0.007	<0.007*	ND	0.007	WIAC	0.23	1.44E-03	2.88E-05	3.18E-05	0.06	
463-58-1	Carbonyl sulfide	60.07	0.49	0.183	0.183			2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
108-90-7	Chlorobenzene	112.56	0.26	0.227	0.227	ND	0.227	WIAC	7.43	3.42E-02	6.84E-04	7.94E-04	1.51	
75-45-6	Chlorodifluoromethane	86.47	1.3	0.355	0.355	ND	0.355	WIAC	11.63	4.11E-02	8.22E-04	9.06E-04	1.81	
75-00-3	Chloroethane	64.52	1.25	0.239	0.448	ND	0.448	WIAC	14.67	3.87E-02	7.74E-04	8.53E-04	1.71	
67-66-3	Chloroform	119.39	0.03	0.021	0.01	ND	0.01	WIAC	0.33	1.60E-03	3.20E-05	3.52E-05	0.07	
74-87-3	Chloromethane	50.49	1.21	0.249	0.136	ND	0.136	WIAC	4.45	9.20E-03	1.84E-04	2.03E-04	0.41	
156-59-2	cis-1,2-dichloroethene	96.94				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
98-82-8	cumene	120.19				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
110-82-7	cyclohexane	84.16					0.992	2023 LFG Testing	32.49	1.12E-01	2.24E-03	2.46E-03	4.93	
124-48-1	Dibromo-chloromethane					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
75-71-8	Dichlorodifluoromethane	120.91	15.7	1.751	0.964	ND	0.964	WIAC	31.57	1.56E-01	3.12E-03	3.44E-03	6.88	
75-43-4	Dichlorofluoromethane	102.92	2.62			ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
75-09-2	Dichloromethane	84.94	14.3	3.395	3.395	ND	3.395	WIAC	111.18	3.86E-01	7.72E-03	8.51E-03	17.02	
115-10-6	dimethyl ether	46.07				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
77-78-1	Dimethyl sulfide	62.13	7.82	6.809	6.809			2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
74-84-0	Ethane	30.07	889	7.943	7.943			2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
64-17-5	Ethanol	46.08	27.2	118.618	64.425	57.5	57.5	2023 LFG Testing	1,882.99	3.55E+00	7.10E-02	7.82E-02	156.43	
141-78-6	ethyl acetate	88.11				2.22	2.22	2023 LFG Testing	72.70	2.62E-01	5.24E-03	5.77E-03	11.55	
75-08-1	Ethyl mercaptan	62.13	2.28	1.356	0.226			2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
100-41-4	Ethybenzene	106.16	4.61	6.789	6.789	3.63	3.63	2023 LFG Testing	118.87	5.16E-01	1.03E-02	1.14E-02	22.75	
75-69-4	Fluorotrichloromethane	137.38	0.76	0.327	0.327	ND	0.327	WIAC	10.71	6.02E-02	1.20E-03	1.33E-03	2.65	
142-82-5	heptane	100.21					1.66	1.66	2023 LFG Testing	54.36	2.23E-01	4.46E-03	4.91E-03	9.82
87-68-3	Hexachlorobutadiene					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
110-54-3	Hexane	86.18	6.57	2.324	2.063	0.924	0.924	2023 LFG Testing	30.26	1.07E-01	2.13E-03	2.35E-03	4.70	
7647-01-0	Hydrochloric Acid	36.5	42			ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
7783-06-4	Hydrogen sulfide*	34.08	35.5	23.578	23.578			300 Proposed BACT	9,824.30	1.37E+01	4.11E-02	4.53E-02	90.54	
7439-97-6	Mercury (total)	200.61	0.000292					2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
67-56-1	methanol	32.04					19.9	19.9	2023 LFG Testing	651.68	8.54E-01	1.71E-02	1.88E-02	37.64
74-83-9	Methyl bromide (Bromomethane)					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
78-93-3	Methyl ethyl ketone	72.11	7.09	10.557	12.694	13.9	13.9	2023 LFG Testing	455.19	1.34E+00	2.68E-02	2.96E-02	59.17	
108-10-1	Methyl isobutyl ketone	100.16	1.87	0.76	0.76	1.14	1.14	2023 LFG Testing	37.33	1.63E-01	3.06E-03	3.37E-03	6.74	
74-93-1	Methyl mercaptan	48.11	2.49	1.292	1.266			2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
1634-04-4	Methyl tert butyl ether					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
103-65-1	n-propyl benzene	120.2				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
95-47-6	o-xylene	106.16					2.09	2.09	2023 LFG Testing	68.44	2.97E-01	5.94E-03	6.55E-03	13.10
1330-20-7	p,8-Xylene	106.16	12.1	16.582	16.582	5.98	5.98	2023 LFG Testing	195.83	8.50E-01	1.70E-02	1.87E-02	37.48	
127-18-4	Perchloroethylene (tetrachloroethylene)					ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
109-66-0	Pentane	72.15	3.29	1.48E+01	ND		14,757	WIAC	483.26	1.43E+00	2.85E-02	3.14E-02	62.86	
74-98-6	Propane	44.09	11.1	14.757	19.858	0	0	2023 LFG Testing	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
115-07-1	propane	42.08					16.5	16.5	2023 LFG Testing	540.34	9.30E-01	1.86E-02	2.05E-02	40.99
100-42-5	styrene	104.15				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	
75-65-0	tertbutanol	74.12				ND	0	Non Detect	0.00	0.00E+00	0.00E+00	0.00E+00	0.0	

TABLE 2: POTENTIAL TAP EMISSIONS PART 2

CAS #	Pollutant Common Name	Total Emissions (lb/yr)	HAP?	TAC?	Averaging Period	SQER (lb/averaging period)	De Minimis (lb/averaging period)	Temporary Flare Emission (lb/averaging period)	Removed 956 scfm Flare (lb/averaging period)	Increase in Emissions Netting Basis (lb/averaging period)	Under deminimis?	Under SQER?
71-55-6	1,1,1-Trichloroethane	1.32	Yes	Yes	24-hr	370	19	0.003625199	0.001575314	0.002049885	UNDER	UNDER
79-34-5	1,1,2,2-Tetrachloroethane	0.05	Yes	Yes	year	2.8	0.14	0.049547119	0.021530475	0.028016644	UNDER	UNDER
75-34-3	1,1-Dichloroethane	4.33	Yes	Yes	year	100	5.1	4.329610563	1.88141259	2.448197973	UNDER	UNDER
75-35-4	1,1-Dichloroethene	0.53	Yes	Yes	24-hr	15	0.74	0.001442531	0.000626845	0.000815685	UNDER	UNDER
107-06-2	1,2-Dichloroethane	0.70	Yes	Yes	year	6.2	0.31	0.701080663	0.304651415	0.396429248	OVER	UNDER
78-87-5	1,2-Dichloropropane	0.15	Yes	Yes	year	16	0.81	0.153424565	0.066669947	0.086754618	UNDER	UNDER
67-63-0	2-Propanol	46.49	No	Yes	1-hr	5.9	0.3	0.005306901	0.00230609	0.003000811	UNDER	UNDER
67-64-1	Acetone	74.41	No	No				0.008493942	0.003691004	0.004802938		
107-13-1	Acrylonitrile	0.11	Yes	Yes	year	0.56	0.028	0.112770837	0.049004054	0.063766782	OVER	UNDER
71-43-2	Benzene	22.92	Yes	Yes	year	21	1	22.91870543	9.959219269	12.95948616	OVER	UNDER
75-27-4	Bromodichloromethane	3.01	No	Yes	year	4.4	0.22	3.008021087		3.008021087	OVER	UNDER
75-15-0	Carbon disulfide	0.99	Yes	Yes	24-hr	59	3	0.002721337	0.001182545	0.001538792	UNDER	UNDER
56-23-5	Carbon tetrachloride	0.06	Yes	Yes	year	27	1.4	0.063576171	0.027626736	0.035949435	UNDER	UNDER
463-58-1	Carbonyl sulfide	0.00	Yes	Yes	24-hr	0.74	0.037	0	0	0	UNDER	UNDER
108-90-7	Chlorobenzene	1.51	Yes	Yes	24-hr	74	3.7	0.004132798	0.001795888	0.002336909	UNDER	UNDER
75-45-6	Chlorodifluoromethane	1.81	No	Yes	24-hr	3700	190	0.0049651	0.002157562	0.002807538	UNDER	UNDER
75-00-3	Chloroethane	1.71	Yes	Yes	24-hr	2200	110	0.004675269	0.002031617	0.002643652	UNDER	UNDER
67-66-3	Chloroform	0.07	Yes	Yes	year	7.1	0.35	0.070484725	0.030628817	0.039855908	UNDER	UNDER
74-87-3	Chloromethane	0.41	Yes	Yes	24-hr	6.7	0.33	0.001110653	0.000482629	0.000628024	UNDER	UNDER
106-46-7	1,4-Dichlorobenzene	12.57	Yes	Yes	year	15	0.74	12.56645999		12.56645999	OVER	UNDER
75-71-8	Dichlorodifluoromethane	6.88	No	No				0.000785529	0.000341348	0.000444181		
75-09-2	Dichloromethane	17.02	Yes	Yes	year	9800	490	17.02468525	7.39799959	9.626685659	UNDER	UNDER
77-78-1	Dimethyl sulfide	0.00	Yes	No				0	0	0		
74-84-0	Ethane	0.00	No	No				0	0	0		
64-17-5	Ethanol	156.43	No	No				0.017856785	0.007759585	0.0100972		
75-08-1	Ethyl mercaptan	0.00	No	No				0	0	0		
100-41-4	Ethylbenzene	22.75	Yes	Yes	year	65	3.2	22.75069096	9.886209343	12.86448161	OVER	UNDER
106-93-4	1,2-Dibromoethane	0.06	Yes	Yes	year	0.27	0.014	0.055459712	0.024099766	0.031359946	OVER	UNDER
75-69-4	Fluorotrichloromethane	2.65	No	No				0.000302757	0.000131562	0.000171195		
110-54-3	Hexane	4.70	Yes	Yes	24-hr	52	2.6	0.012879905	0.005596904	0.007283001	UNDER	UNDER
7783-06-4	Hydrogen sulfide	90.54	No	Yes	24-hr	0.15	0.0074	0.248054033	0.107790752	0.14026328	OVER	UNDER
78-93-3	Methyl ethyl ketone	59.17	No	Yes	24-hr	370	19	0.162122946	0.070449789	0.091673157	UNDER	UNDER
108-10-1	Methyl isobutyl ketone	6.74	Yes	Yes	24-hr	220	11	0.018468574	0.008025435	0.010443139	UNDER	UNDER
74-93-1	Methyl mercaptan	0.00	No	No				0	0	0		
127-18-4	Tetrachloroethylene	0.00	Yes	Yes	year	27	1.3	0		0	UNDER	UNDER
74-98-6	Propane	0.00	No	No				0	0	0		
108-88-3	Toluene	51.30	Yes	Yes	24-hr	370	19	0.140538105	0.061070195	0.07946791	UNDER	UNDER
156-60-5	trans-1,2-dichloroethene	0.29	No	Yes	24-hr	60	3	0.000799664	0.00034749	0.000452173	UNDER	UNDER
79-01-6	Trichloroethene	5.28	Yes	Yes	year	34	1.7	5.282865251	2.295645082	2.987220169	OVER	UNDER
75-01-4	Vinyl chloride	3.97	Yes	Yes	year	18	0.92	3.973953461	1.726863413	2.247090048	OVER	UNDER
1330-20-7	p,&m-Xylene	37.48	Yes	No	24-hr	16	0.82	0.102682465	0.044620198	0.058062267	UNDER	UNDER
1016-97-8	Butane	0.00	No	No				0		0		
630-08-0	Carbon monoxide	0.00	No	Yes	1-hr	43	1.1	0		0	UNDER	UNDER
75-43-4	Dichlorodifluoromethane	0.00	No	No				0		0		
7439-97-6	Mercury (total)	0.00	Yes	Yes	24-hr	0.0022	0.00011	0	0	0	UNDER	UNDER
109-66-0	Pentane	62.86	No	No				0.007175586		0.007175586		
124-38-9	Carbon Dioxide	0.00	No	No				0		0		
7647-01-0	Hydrochloric Acid	0.00	Yes	Yes	24-hr	0.67	0.033	0		0	UNDER	UNDER
115-07-1	propene	40.99	No	Yes	24-hr	220	11	0.112303649	0.04880104	0.063502609	UNDER	UNDER
67-56-1	methanol	37.64	Yes	Yes	24-hr	1500	74	0.103128755	0.044814132	0.058314623	UNDER	UNDER
156-59-2	cis-1,2 dichloroethene	0.00	No	No				0		0		
141-78-6	ethyl acetate	11.55	No	No				0.00131826	0.000572844	0.000745416		
109-99-9	tetrahydrofuran	18.99	No	Yes	24-hr	150	7.4	0.052019305	0.022604753	0.029414552	UNDER	UNDER
110-82-7	cyclohexane	4.93	No	Yes	24-hr	440	22	0.013503663	0.005867955	0.007635708	UNDER	UNDER
540-84-1	2,2,4 trimethyl pentane	0.00	Yes	No				0		0		
142-82-5	heptane	9.82	No	No				0.001121094	0.000487166	0.000633928		
100-42-5	styrene	0.00	Yes	Yes	24-hr	65	3.2	0		0	UNDER	UNDER
95-47-6	o xylene	13.10	Yes	Yes	24-hr	16	0.82	0.03588735	0.015594685	0.020292665	UNDER	UNDER
108-67-8	1,3,5 trimethylbenzene	0.00	No	Yes	24-hr	4.4	0.22	0		0	UNDER	UNDER
95-63-6	1,2,4 trimethylbenzene	0.00	No	Yes	24-hr	4.4	0.22	0		0	UNDER	UNDER
115-10-6	dimethyl ether	0.00	No	No				0		0		
75-69-4	trichlorodifluoromethane	2.65	No	No				0.000302757	0.000131562	0.000171195		
75-65-0	tertbutanol	0.00	No	No				0		0		
591-78-6	2-hexanone	0.00	No	Yes	24-hr	2.2	0.11	0		0	UNDER	UNDER
98-82-8	cumene	0.00	Yes	Yes	24-hr	30	1.5	0		0	UNDER	UNDER
80-56-8	a-pinene	0.00	No	No				0		0		
103-65-1	n-propyl benzene	0.00	No	No				0		0		
622-96-8	4-ethyltoluene	0.00	No	No				0		0		
18172-67-3	b-pinene	0.00	No	No				0		0		

	HAPS	Tons	Pounds
	Total	0.12	247.48
	Max Single	0.08	156.43
TACS	Total	0.24	476.22
	Max Single	0.08	156.43

Attachment E BACT Analysis

**BEST AVAILABLE CONTROL TECHNOLOGY
ANALYSIS
LRI 304th Street Landfill
Puyallup, Washington**

Presented to:

LRI 304th Street Landfill
30919 Meridian St. E
Graham, WA 98338

Presented by:

SCS ENGINEERS
2405 140th Ave NE #107
Bellevue, WA 98005

July 2023
File No. 04222001.23

Offices Nationwide
www.scsengineers.com

Table of Contents

Section		Page
1	INTRODUCTION	1
2.	TOP DOWN BACT.....	1
	Step 1 - Identify Control Options.....	1
	Pre-Combustion Control.....	2
	Post-Combustion Control	4
	Step 2 – Eliminate Technically Infeasible Options.....	5
	Step 3 - Rank Remaining Control Technologies by Control Effectiveness.....	5
	Control effectiveness.....	5
	Benchmark Control Effectiveness Limit	6
	Step 4 - Evaluate the Most Effective Option based on economic, environmental, and energy impacts.....	7
	Cost Effectiveness Analysis	7
	Cost Evaluation	8
	Step 5 - Conclusions and Selection of BACT.....	10
	Proposed BACT Limit.....	10
2	GENERAL COMMENTS	10

Appendices

Appendix A Cost Analysis

1 INTRODUCTION

On behalf of LRI 304th Street Landfill (LRI or LRI Landfill), SCS Engineers (SCS) has developed the following analysis supporting a Best Available Control Technology (BACT) determination for control of sulfur oxides (SO_x) from the temporary flare.

2. TOP DOWN BACT

As stated in Regulation I Section 6.01, PSCAA adopts by reference and enforces the Washington Department of Ecology (Ecology) definition of BACT:

WAC 173-400-030(13) - "Best available control technology (BACT)" means an emission limitation based on the maximum degree of reduction for each air pollutant subject to regulation under chapter 70.94 RCW emitted from or which results from any new or modified stationary source, which the permitting authority, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through application of production processes and available methods, systems, and techniques, including fuel cleaning, clean fuels, or treatment or innovative fuel combustion techniques for control of each such pollutant. In no event shall application of the "best available control technology" result in emissions of any pollutants which will exceed the emissions allowed by any applicable standard under 40 C.F.R. Part 60 and Part 61. Emissions from any source utilizing clean fuels, or any other means, to comply with this paragraph shall not be allowed to increase above levels that would have been required under the definition of BACT in the federal Clean Air Act as it existed prior to enactment of the Clean Air Act Amendments of 1990.

SCS is using the commonly used and widely accepted "top-down approach" to complete this BACT analysis. Below are the five steps that are part of this top-down analysis:

1. Identify each emission unit and all available control options;
2. Evaluate the technical feasibility of each control option;
3. Rank the remaining control technologies by control effectiveness;
4. Eliminate control options based on economic, environmental and energy impacts; and
5. Select BACT.

STEP 1 - IDENTIFY CONTROL OPTIONS

Emissions of SO_x at the LRI Landfill are generated via the conversion of various total reduced sulfur (TRS) compounds present in LFG to SO_x during the combustion process of flare operation. Control technologies to reduce the emissions of SO_x from LFG flares are divided into two groups; pre-combustion controls to reduce inlet sulfur concentrations and post combustion controls to reduce emissions of the SO_x in the exhaust. SCS searched state and federal databases, and identified the following potential control technologies to control SO_x emissions from the temporary flare:

- Pre-Combustion Control
 - Sulfa Treat
 - FerroSorp
 - Iron Sponge
 - Activated Carbon
 - LO-CAT
- Post-Combustion Control
 - Exhaust “Scrubbing”

Pre-Combustion Control

SulfaTreat

SulfaTreat is a solid scavenger system, which consists of passing the LFG either across a fixed bed or through a batch-type reactor of granular reactant. The granular material reacts with H₂S within the LFG to remove it from the gas stream. An additional moisture separator would need to be employed upstream of the process inlet to remove excess moisture from the LFG. Multiple equipment arrangement configurations are possible (e.g., parallel, series, etc.), depending on site needs including the need to minimize downtime of the treatment system. During the process, the LFG flows through the consistently sized and shaped granular SulfaTreat product in the bed, where the hydrogen sulfide (H₂S), the primary component in TRS for LFG, reacts with the product to form a stable and safe byproduct. The product consumption is dependent only on the amount of H₂S that passes through the bed. This matches the need for H₂S removal with variations in system flow conditions and outlet specifications, regardless of the total volume or other common components of the gas.

SCS is aware of the SulfaTreat technology having been used for LFG treatment, including at the Dry Bridge Road Landfill in Rhode Island, Cottage Street Landfill (7,200 parts per million by volume [ppmv] TRS inlet concentration inlet), McCommas Bluff Landfill (600 ppmv inlet concentration), Allentown Landfill (1,100 ppmv inlet concentration), and the University of New Hampshire (400 ppmv inlet concentration). SCS is not aware of any critical technical operational problems to date regarding this technology, and is one of the most frequently used technologies.

FerroSorp

FerroSorp is a solid scavenger system that consists of passing the LFG either across a fixed bed reactor of granular reactant. The granular material reacts with H₂S within the LFG to remove it from the gas stream. During the process, the LFG flows through the consistently sized and shaped granular FerroSorp product in the beds, where the H₂S reacts with the product to form a stable and safe byproduct. The filter media does need to be replaced once spent and spent media can be landfilled as nonhazardous waste after testing. The reactor vessels are designed in a specific configuration to ensure minimum residence time (contact time with media) as required by the manufacturer requirements. FerroSorp creates an exothermic reaction during sulfur removal that

can be a fire hazard when exposed to sudden increase in oxygen. This is of concern in a system with combustible LFG passing over the media and a need for the system to be opened up routinely to replace filter media.

SCS is aware of the FerroSorp technology having been used for anaerobic digester biogas at the GreenGasUSA Lewiston Perdue Chicken Processing facility in North Carolina and LFG at BRADS Landfill in Pennsylvania.

Iron Sponge

Iron Sponge is a solid scavenger system which consists of passing the uncombusted LFG across a bed of hydrated iron oxide. Sulfur compounds within the LFG react with the iron oxide to form iron sulfides, iron mercaptides, and other materials, along with a small amount of water by-product. The filter media can be partially regenerated during operation to prolong the life of media, but will become spent and will need to be replaced. Complete replacement of the media may be required after several regenerations. Please note that the media becomes susceptible to fire as soon as it dries out and comes in contact with oxygen. This makes the change out operations challenging and dangerous. Water has to be added continuously to the exhaust media while performing change outs in order to reduce any hazard. In addition, the spent media has commonly tested as a hazardous waste for Volatile Organic Compounds (VOCs) and metals, which increases disposal costs. The iron sponge system also has an electrical demand due to its regeneration blowers.

SCS is aware of the Iron Sponge technology having been used for LFG treatment, including at the Scholl Canyon Landfill in California (40 ppmv inlet concentration, but no longer in use) and the Kearny and Cape May County Landfills in New Jersey, Pine Avenue Landfill in Niagara Falls, New York, and Ada County Landfill in Boise, Idaho. Our experience has been that handling the spent filter media has been challenging, and that the media reportedly has auto-combusted once it came into contact with oxygen if not wetted down with water, making it extremely dangerous to use particularly with the flammability of LFG.

LO-CAT

LO-CAT is a wet-scrubbing liquid-redox system that essentially uses a water solution that contains a metal ion (iron) to convert H₂S into elemental sulfur, which ultimately settles out of the solution and is removed. In this process, LFG is passed through a chamber which contains a catalyst (special form of Chelated Iron). A chemical reaction occurs in this chamber, and after series of chemical reactions, fresh gas is produced. The used catalyst is sent to a catalyst regeneration chamber for rejuvenation. In this chamber, air is added to the used solution. As a result of chemical reactions in this chamber, a slurry of sulfur and fresh catalyst is produced. The catalyst is sent back to the LFG treatment chamber, and sulfur slurry is sent to a filter chamber which breaks down slurry into elemental sulfur and liquid filtrate. Liquid filtrate is sent back to the catalyst regeneration chamber for reuse. The sulfur becomes a waste product that must be managed.

LO-CAT does not use toxic chemicals nor does it produce hazardous by-products. The catalyst in the system regenerates so the maintenance is minimal, reducing operating and maintenance costs. However, capital costs are high, and if the catalyst is fouled, replacement is expensive. Maintenance of the solution pH is important, and is accomplished through the addition of NaOH or KOH to the system. Also, a number of operating parameters must be monitored and controlled during operation, including the temperature, the water balance, and sulfur content. LO-CAT is most efficient for sulfur loads greater than 200 lb/day and doesn't become economical until sulfur loads approach 1,000 lb/day. At lower concentrations and loads, this technology is considered infeasible, and vendors will not take on such projects.

SCS is aware of the LO-CAT technology being used for LFG treatment, including at the Central Landfill in Florida (5,000 ppmv), the Warren County Landfill in New Jersey (6,000 ppmv inlet concentration), and the Cherry Island Landfill in Delaware (2,000 ppmv inlet concentration), and is not aware of any operational problems regarding this technology, other than the aforementioned capital costs.

Activated Carbon

Activated Carbon is a physical adsorption process which consists of passing the LFG across a bed of activated carbon to remove H₂S from the gas stream. The H₂S is chemically adsorbed onto the activated carbon in addition to other constituents in the gas stream such as VOCs. Because of the affinity for the activated carbon to adsorb the VOCs present in LFG, the media will load up quickly requiring frequent change outs, the cost of which can make this option cost prohibitive.

SCS is most familiar with DARCO BG-1 activated carbon from Cabot Corporation. This product is used for large scale H₂S treatment upstream of renewable natural gas (RNG) facilities and is also one of the most widely-used technologies for sulfur reduction in LFG. The technology has been used at many landfills to treat all or portions of the total LFG flow, including use at individual/clusters of gas extraction wells, and/or to polish the LFG prior to additional pre-treatment units.

Post-Combustion Control

Exhaust Scrubbing

There are a number of technologies that have been applied to other industries for the control of post combustion SOx exhaust (or flue) gas emissions, most traditionally at coal and oil-fired power plants. Both "wet" and "dry" scrubbing technologies have been used for SOx exhaust gas control. These technologies utilize an alkaline or caustic solution which reacts chemically with the exhaust gas to convert SO₂ to calcium sulfate (CaSO₃) or some other compound.

Exhaust/flue gas SOx treatment has been utilized at coal and oil-fired power plants because it is less practical and much more expensive to treat these fuels prior to combustion. However, SCS is not aware of a single installation at which post-combustion control for SOx emissions has been

utilized at a LFG flare, thus we do not believe this technology can be considered technologically feasible in this application. For this application, due to the volume of exhaust gas to be managed in comparison to the raw gas inlet volume, it is simply not practical to treat the exhaust gas instead of the raw inlet LFG. Further, there is a complete absence of data to assess costs and operational issues in using this technology for LFG. Finally, LFG contains many impurities including VOCs, semi-VOCs, and siloxanes that commonly foul post-combustion controls.

STEP 2 – ELIMINATE TECHNICALLY INFEASIBLE OPTIONS

The following control technologies are considered to be technically infeasible and will be eliminated from further analysis.

Iron Sponge/FerroSorp

SCS experience has been that handling the spent filter media has been challenging, and that the media reportedly tended to auto-combust once it came into contact with oxygen, making it extremely dangerous to use particularly with the flammability of LFG. Therefore, due to the inherent danger associated with the iron sponge and FerroSorp, SCS does not consider these technologies to be feasible for the application considered herein.

Exhaust Scrubbing

No landfill gas flare projects were identified that utilize exhaust/flue gas SOx controls and there is no data available to assess the costs and operational issues in using this technology at a landfill flare; therefore, SCS does not consider exhaust sulfur scrubbing to be a control option that has been demonstrated to be technically feasible for the application being considered. Furthermore, due to the impurities present in LFG, such as VOC, semi-VOC, and siloxanes, extensive front-end treatment would likely be required, which would increase the costs substantially.

STEP 3 - RANK REMAINING CONTROL TECHNOLOGIES BY CONTROL EFFECTIVENESS

In SCS' experience and research, sulfur treatment has historically been implemented at sites with high sulfur content (generally in the thousands of ppmv). In general, aforementioned technologies are typically designed to treat gas to a specified outlet sulfur concentration and not to a percent removal as there are many variables that affect percent removal and the percentage can vary throughout the life-cycle of the media or catalyst. This section is intended to compare control effectiveness of the remaining technologies and then subsequently benchmark control effectiveness limit (i.e., outlet sulfur concentration) for these select technologies.

Control effectiveness

The technically-feasible control options (activated carbon, SulfaTreat, and LO-CAT) can all be designed to treat LFG with a TRS concentration of 2000 to 3000 ppmv and are ranked equally effective for this project. This allows them to be applied to a facility like the temporary flare in

this case, which is projected to combust LFG with an annual average TRS concentration of 2,000 ppmv.

Benchmark Control Effectiveness Limit

Numerous permits were surveyed to identify TRS reasonably available control technology (RACT)/BACT limits on flares burning LFG. In each of these cases, RACT or BACT was triggered, and a concentration limit was selected to either avoid exceeding the RACT/BACT cost effectiveness threshold and/or to avoid becoming a major source for SOx. Where controls have been employed, those controls have included treatment of the full LFG volume or partial treatment of areas of the landfill with the highest TRS so that the concentration limit is met.

Sulfur Reduction Limits at Other Landfill Flares

Landfill Name	State, Air Jurisdiction	Control Technology	LFG TRS Limit in ppmv & Averaging Specifics	Permit Condition and Basis
Potrero Hills Landfill	CA, BAAQMD	Controls not required, based on sulfur content in landfill gas	504 ppmv H2S [<i>Averaging via:</i> Quarterly Draeger tube samples, plus an annual source test]	#10. Basis: Regulation 9-1-302 (exhaust limit on SOx), voluntary limit on SO2 PTE to avoid public notice, Regulation 2-2-405
Redwood Landfill	CA, BAAQMD	Activated Carbon for flare	350 ppmv H2S annual average, 370 ppmv during any test on flare [<i>Averaging via:</i> Annual Average of Quarterly LFG Testing]	#18. Basis: Cumulative increase, RACT, Air Toxics Hot Spots Act and Regulations 2-5-302.3 (H2S acute health risk), 9-1-302 (exhaust limit on SOx), and 9-2-301 (H2S limit)
Vasco Road Landfill	CA, BAAQMD	Controls not required, based on sulfur content in landfill gas	320 ppmv [<i>Averaging via:</i> Rolling Annual Average of Quarterly LFG Testing]	#12. Basis: RACT for SO2 and Regulation 9-1-302 (exhaust limit on SOx),
Columbia Ridge	OR, ODEQ	Controls not required, based on sulfur content in landfill gas	300 ppmv [<i>Averaging via:</i> Shall Not Exceed]	Federal PSD BACT determination based on cost effectiveness analysis
Newby Island Landfill	CA, BAAQMD	Activated Carbon [used as partial control to meet sulfur limit]	300 ppmv [<i>Averaging via:</i> Shall Not Exceed]	#10. Basis: Cumulative Increase, Regulation 2-1-204, 2-2-303 (limit to avoid SOx offsets)
Sonoma Central Landfill	CA, BAAQMD	Controls not required, based on sulfur content in landfill gas	300 ppmv [<i>Averaging via:</i> Shall Not Exceed]	#7. Basis: Regulation 9-1-302 (exhaust limit on SOx).
Keller Canyon Landfill	CA, BAAQMD	Controls not required, based on sulfur content in landfill gas	300 ppmv [<i>Averaging via:</i> Shall Not Exceed]	#34. Basis: Cumulative Increase and Regulations 9-1-302 (exhaust limit on SOx), and 2-6-503.
West Contra Costa	CA, BAAQMD	Controls not required, based on sulfur content in landfill gas	300 ppmv [<i>Averaging via:</i> Shall Not Exceed]	#10. Basis: Regulation 9-1-302 (exhaust limit on SOx), Cumulative Increase.

Landfill Name	State, Air Jurisdiction	Control Technology	LFG TRS Limit in ppmv & Averaging Specifics	Permit Condition and Basis
County Landfill				

This table omits TRS limits imposed on LFG flares in California under regulatory requirements other than cases where RACT or BACT was triggered. For instance, SCAQMD Rule 431.1 sets a maximum H2S limit of 150 ppmv for all landfill gas combustors. The BAAQMD sets BACT limits, but District BACT does not consider the cost-effectiveness of a control option. See BAAQMD, Complex Permitting Handbook for BAAQMD New Source Review Permitting at 112 (September 2016). Therefore, District BACT is analogous to federal LAER, and BAAQMD BACT determinations have limited precedential value to a Washington BACT determination. Furthermore, the BAAQMD requires control devices, such as flares, meet RACT. However, the District's definition of RACT is analogous to federal BACT. As such, BAAQMD RACT determinations are relevant precedent for Washington BACT determinations.

STEP 4 - EVALUATE THE MOST EFFECTIVE OPTION BASED ON ECONOMIC, ENVIRONMENTAL, AND ENERGY IMPACTS

The remaining control technologies involve pre-treatment of LFG to reduce the TRS content of the LFG prior to combustion. The cost for implementing these technologies was evaluated and the results of this economic evaluation are presented below.

Cost Effectiveness Analysis

SCS evaluated the estimated capital and operating costs using the U.S. Environmental Protection Agency (EPA) Air Pollution Control Cost Manual to calculate the cost effectiveness of the potential emission control technologies. The cost effectiveness is defined as the ratio of the annualized cost of that abatement system over the reduction in annual pollutant emissions achieved by the system for the pollutant in question as shown below.

Cost-effectiveness = (Annualized Cost of Abatement System (\$/yr))/(Reduction in Annual Pollutant Emissions (ton/yr))

Reduction in Annual Pollutant Emissions (ton/yr) = Baseline Uncontrolled Emissions – Control Option Emissions

The annualized cost of the abatement system was estimated from the installed cost of the control technology and its expected annual operating and maintenance costs, as shown below.

Annualized cost = Direct Costs + Indirect Costs

Direct Costs (Sum of the Following):

Labor
Raw Materials

Replacement Parts
Utilities

Indirect Costs (Sum of the following):

Overhead (60% of Labor Costs)
Property Tax (1% of Total Capital Cost)
Insurance (1% of Total Capital Cost)
General & Administrative (2% of Total Capital Cost)
Capital Recovery (CRF x Total Capital Cost)
where Total Capital Cost = Installed Equipment Cost

Cost Evaluation

The reduction in the annual SOx emissions is based on the inlet concentration of TRS, the removal efficiency of the control technology, and the rolling 12 month average LFG flow rate of 2,200 scfm through the temporary flare, based on conservative model projections.

Over the two-year operating life of the temp flare the TRS concentration of LFG entering the scrubbing system is expected to average 2,000 ppmv. This is based on actual TRS levels observed in landfill gas samples. LFG sulfur scrubbing technologies selected as BACT have achieved an outlet TRS concentration of 300 ppm. The difference between a SOx emission rate at an inlet concentration of 2,000 ppmv and 300 ppmv is 895.27 lbs/day or 163.39 tons/year at the projected annual combustion rate of 2,200 scfm.

Estimated Annual Pollutant Reduction

Technology	Flare Inlet Concentration (ppmv)	SOX Emissions (lb/day)	SOX Emissions (tons/yr)
Uncontrolled	2,000	1,053.26	192.22
Controlled	300	157.99	28.83
Uncontrolled Minus Controlled	1,700	895.27	163.39

For the remaining control technologies, SCS evaluated the estimated capital and operating costs based on the parameters specified above and under the assumption that this temporary flare will operate for a maximum of 2 years.

LO-CAT

LO-CAT does not typically become economical unless the inlet has a very high sulfur concentration due to the high capital cost. Cost data from an analysis SCS conducted for the Lancaster Landfill and Recycling Center (Lancaster) in 2008 was utilized in this analysis. The Lancaster costs were multiplied by a ratio of the inlet TRS sulfur concentrations and/or maximum flow rates to estimate the costs for the LRI facility. The vendor would not supply updated cost

information for this project as they are sure it will not be cost effective. A summary of the cost are below and details are provided in Appendix A.

Type of Cost	Costs
Capital Cost	\$3,945,824
Direct Costs (Annual Operating and Replacement)	\$733,511
Indirect Costs (Including Capital Recovery)	\$2,437,466
Total Annualized Cost	\$3,170,977

SulfaTreat

SCS obtained updated costs from Schlumberger (SLB) for the amount and costs of media required for the LRI process. These costs were used along with the cost data from an analysis SCS conducted for the Arbor Hills Landfill Gas to Energy Facility (Arbor Hills) in 2018. A summary of the cost are below and details are provided in Appendix A.

Type of Cost	Costs
Capital Cost	\$1,195,161
Direct Costs (Annual Operating and Replacement)	\$676,469
Indirect Costs (Including Capital Recovery)	\$718,680
Total Annualized Cost	\$1,395,149

Activated Carbon

Cost data from an analysis SCS conducted for the Chiquita Canyon Landfill in Los Angeles County, California in 2015 was used to estimate the potential costs for an activated carbon system at the LRI. A summary of the costs are in the following table and details are provided in Appendix A. This cost is highly variable because of the consumption of carbon media by VOCs, but we have conservatively assumed limited VOC impacts.

Type of Cost	Costs
Capital Cost	\$941,680
Direct Costs (Annual Operating and Replacement)	\$832,592
Indirect Costs (Including Capital Recovery)	\$658,730
Total Annualized Cost	\$1,389,826

These estimated total costs were used to evaluate the approximate cost per pound of possible SO_x emission reductions. As shown in the following table, SulfaTreat and Activated Carbon are control technologies that are feasible in cost, with LO-CAT clearly being out of the feasible range.

Technology	Cost per Emissions Reduced (\$/ton SO _x)
LO-CAT	\$19,408
SulfaTreat	\$8,539
Activated Carbon	\$8,506

STEP 5 - CONCLUSIONS AND SELECTION OF BACT

There are three technologies that are technologically feasible for the reduction of sulfur content in LFG flares. One option was eliminated on an economical basis leaving two options financially feasible compared to the cost, activated carbon and SulfaTreat. These two meet the BACT cost-effectiveness test, whereas LO-CAT has an exceptionally high cost per ton for the volume and sulfur concentration of the LFG that the temporary flare will burn. LRI submits that activated carbon is BACT for control of SO_x emissions from the temporary flare.

PROPOSED BACT LIMIT

SCS is proposing that the BACT limit be established as 300 ppmv H₂S on a rolling 12-month average in the LFG prior to combustion in the temporary flare based on an average of H₂S concentration tests using ASTM Method D-5504, EPA Method 15/16, or another method approved by PSCAA. SCS is recommending that these H₂S tests be performed on a monthly basis. Additionally, LFG flow to the temporary flare will be monitored monthly to confirm an average flow rate of less than 2,200 scfm on a 12-month rolling basis.

2 GENERAL COMMENTS

This report is based on available information as available to SCS Engineers. This report has been prepared for specific application to the project discussed and has been prepared in accordance with generally accepted engineering practices. No warranties, express or implied, are intended or made.

ATTACHMENT A

COST ANALYSIS

BACT Analysis Data for LRI Landfill

Control Device Name:

SLB SulfaTreat System

Control Device Description:

SulfaTreat for reduction of TRS as H2S to 300 PPMV from 2000 PPM

Site-Wide Emissions	SOx	SOx lb/day	Site-Wide Emissions tpy
Guaranteed Uncontrolled (ppmv @0% O2)	2000	1053.26	192.22
Est. Controlled (ppmv @0% O2)	300	157.99	28.83
Reduction	85%	895.27	163.4

Temporary Flare Maximum LFG Flow scfm	2,200
--	-------

Capital Cost (for SulfaTreat System)	Description	Capital Cost*	Cost for SOx Reduction	Comments
SulfaTreat Material (First Fill of Media)	\$ 255,779	\$ 255,779	SLB Estimate ¹	
SulfaTreat System*	\$ 990,000	\$ 544,500	SLB Estimate ²	
Transportation*	\$ 118,800	\$ 65,340	SLB Estimate ²	
Sulfa Treat Installation*	\$ 125,000	\$ 68,750	SCS Estimate ³	
Permitting and Design	\$ 100,000	\$ 100,000	SCS Estimate ³	
Sales Taxes@ 6%	\$ 89,375	\$ 52,142	For Purchase of Major Equipment ⁴	
Contingency @10%	\$ 167,895	\$ 108,651	Based on 10% contingency ⁵	
Total Capital Cost		\$ 1,195,161		

*Capital Cost Based on LFG flow of 4,000 scfm

Annual Operating Cost (for SulfaTreat System) and Estimated Overhaul/Media Replacement Cost	Annual Cost	Cost for SOx Reduction	Comments
Media Purchase Cost	\$ 281,356	\$ 281,356	SLB Estimate ¹
Disposal Cost	\$ 188,927	\$ 188,927	SLB/SCS Estimate ⁶
Transportation	\$ 31,647	\$ 31,647	SLB/SCS Estimate ⁷
Labor	\$ 31,647	\$ 31,647	SLB Estimate/SCS Estimate ⁷
Maintenance	\$ 46,969	\$ 46,969	SCS Estimate ⁸
Vessel Repair Replacement Costs	\$ 32,670	\$ 32,670	Mi SWACO Estimate ⁹
Miscellaneous	\$ 5,197	\$ 5,197	SCS Estimate ¹⁰
Contingency @10%	\$ 58,055	\$ 58,055	Based on 10% contingency
Total Annual Operating and Replacement Cost		\$ 676,469	
Overhead (60% of Labor Costs)		\$ 18,988	USEPA Cost Estimate Manual, Section 2.6.5.7
Property Tax (1% of Total Capital Cost)		\$ 11,952	USEPA Cost Estimate Manual, Section 2.6.5.8
Insurance (1% of Total Capital Cost)		\$ 11,952	USEPA Cost Estimate Manual, Section 2.6.5.8
General & Administrative (2% of Total Capital Cost)		\$ 23,903	USEPA Cost Estimate Manual, Section 2.6.5.8
Capital Recovery (CRF x Total Capital Cost)	0.545 CRF	651,885	USEPA Cost Estimate Manual, Equation 2.8a ¹¹
Total Annual Operating Cost		\$ 1,395,149	
Total Annual Cost		\$ 1,395,149	

Cost Effectiveness of SulfaTreat System:

Cost effectiveness (\$/ton) = (Annual cost \$/year) / (District Standard Emissions - Emissions (w/tech feas BACT) (ton/year))		
Cost Effectiveness \$ 1,395,149.21	163.39 ton/year	\$8,538.95 /ton
Proposed SOx Cost Effectiveness		

Notes

- ¹ Estimates from SLB (Schlumberger) for media costs for the LRI facility
- ² Estimates for capital costs for initial SulfaTreat purchase and installation are based on estimates obtained from SLB at \$165,000 per vessel, requiring 6 vessels from their experience with the SulfaTreat technology. Includes cost of initial media shipment.
- ³ The design, permitting, and startup costs for the catalyst systems were estimates made by SCS Engineers from recent experience.
- ⁴ Applied at 8.75% rate for major equipment purchases
- ⁵ A 10% contingency was applied and considered reasonable for the uncertainties with this project
- ⁶ Schlumberger estimate 128,000 pounds media per vessel and 6 vessels and change-out every 173 days, Mi SWACO estimate assuming \$0.15/lb cleanout and SCS estimates \$350/ton or \$0.175/lb disposal cost as hazardous waste.
- ⁷ SCS estimate based on \$15,000 per changeout and changeout every 173 days per vessel based on Schlumberger quote.
- ⁸ SCS estimate 5% of capital costs, less media
- ⁹ Mi SWACO estimate using 50% of the sulfa treat system costs every 10 years plus 20% installation costs
- ¹⁰ SCS estimates 0.5% of capital costs, less media plus \$500 equipment rental
- ¹¹ Indirect costs based on USEPA Cost Estimation Manual, equation 2.8a. $CRF = i(1+i)^n / (1+i)^n - 1$, where n = 2 years, i = 0.06 interest rate

BACT Analysis Data for LRI Facility

Control Device Name:

LO-CAT System

Control Device Description:

LO-CAT for reduction of TRS as H2S to 300 PPMV from 2000 PPM

Site-Wide Emissions	SOx	SOx lb/day	Site-Wide Emissions
			tpy
Guaranteed Uncontrolled (ppmv @15% O2)	2000	1053.26	192.22
Est. Controlled (ppmv @15% O2)	300	157.99	28.83
Reduction	85%	895.27	163.39

Temporary Flare Maximum LFG Flow scfm	2,200
--	-------

Capital Cost (for LO-CAT System)	Description	Capital Cost	Cost for SOx Reduction	Comments
	LO-CAT System *	\$ 1,120,000	\$ 1,775,216	SCS Estimate ^{1 **}
	Support Equipment *	\$ 448,000	\$ 710,086	SCS Estimate ^{1 **}
	LO-CAT Installation *	\$ 448,000	\$ 710,086	SCS Estimate ^{2 **}
	Permitting and Design	\$ 200,000	\$ 200,000.00	SCS Estimate ²
	Sales Taxes@ 6%	\$ 120,960	\$ 191,723	For Purchase of Major Equipment ³
	Contingency @10%	\$ 233,696	\$ 358,711	Based on 10% contingency ⁴
	Total Capital Cost		\$ 3,945,824	

*Based on Lancaster's LFG flow of 1,388 scfm

0

Annual Operating Cost (for LO-CAT System) and Estimated Overhaul/Media Replacement Cost	Annual Cost	Cost for SOx Reduction**	Comments
Chemical Cost*	\$ 7,770	\$ 49,262	SCS Estimate ^{1 **}
Disposal Cost*	\$ 7,667	\$ 48,611	SCS Estimate ^{5 **}
Transportation*	\$ 1,338	\$ 8,484	SCS Estimate ^{1 **}
Labor*	\$ 33,500	\$ 212,392	SCS Estimate ^{6 **}
Maintenance	\$ 197,291	\$ 197,291	SCS Estimate ⁷
Power*	\$ 26,162	\$ 165,867	SCS Estimate ^{8 **}
Contingency @10%	\$ 24,757	\$ 51,604	Based on 10% contingency ⁴
Total Annual Operating and Replacement Cost		\$ 733,511	
Overhead (60% of Labor Costs)		\$ 127,435	USEPA Cost Estimate Manual, Section 2.6.5.7
Property Tax (1% of Total Capital Cost)		\$ 39,458	USEPA Cost Estimate Manual, Section 2.6.5.8
Insurance (1% of Total Capital Cost)		\$ 39,458	USEPA Cost Estimate Manual, Section 2.6.5.8
General & Administrative (2% of Total Capital Cost)		\$ 78,916	USEPA Cost Estimate Manual, Section 2.6.5.8
Capital Recovery (CRF x Total Capital Cost)	0.545 CRF	2,152,198	USEPA Cost Estimate Manual, Equation 2.8a ⁹
Total Annual Operating Cost		\$ 3,170,977	
Total Annual Cost		\$ 3,170,977	

*Based on Lancaster's LFG flow of 1,388 scfm

**Multiplied by ratio of temporary flare maximum flow of 2,200 scfm to Lancaster's 1,388 scfm and the ratio of the LRI concentration of 2,000 ppm to Lancaster's 500 ppm

Cost Effectiveness of LO-CAT System:
Cost effectiveness (\$/ton) = (Annual cost \$/year) / (District Standard Emissions - Emissions (w/tech feas BACT) (ton/year))
Cost Effectiveness \$ 3,170,976.57 163.39 ton/year \$19,407.82 /ton
Proposed SOx Cost Effectiveness

Notes

- ¹ Estimates for capital costs for initial LO-CAT system purchase and installation are based on estimates obtained from SCS Engineers from previous estimates from Merichem
- ² The design, permitting, and startup costs for the catalyst systems were estimates made by SCS Engineers from recent experience
- ³ Applied at 8.75% rate for major equipment purchases
- ⁴ A 10% contingency was applied and considered reasonable for the uncertainties with this project
- ⁵ SCS estimate assuming \$0.15/lb cleanout plus disposal costs due to water content based upon amount of sulfur removed (lb/day)
- ⁶ SCS estimate assumes 4 hours of operating labor per day per 5 day work week
- ⁷ SCS estimate 5% of capital costs
- ⁸ SCS estimates 18.1 kW required at \$0.11 kW-hr for a full year (8,760 hours), 50% contingency also included
- ⁹ Indirect costs based on USEPA Cost Estimation Manual, equation 2.8a. $CRF = i(1+i)^n / (1+i)^n - 1$, where $n = 2$ years, $i = 0.06$ interest rate

BACT Analysis Data for LRI Facility

Control Device Name:

Activated Carbon System

Control Device Description:

Activated Carbon for reduction of TRS as H2S to 300 PPMV from 2000 PPM

<u>Site-Wide Emissions</u>	<u>SOx</u>	<u>SOx lb/day</u>	<u>Site-Wide Emissions tpy</u>
Guaranteed Uncontrolled (ppmv @15% O2)	2000	1053.26	192.22
Est. Controlled (ppmv @15% O2)	300	157.99	28.83
Reduction	85%	895.27	163.39

<u>Temporary Flare Maximum LFG Flow scfm</u>	2,200
--	-------

<u>Capital Cost (for Activated Carbon System)</u>	<u>Description</u>	<u>Capital Cost</u>	<u>Cost for SOx Reduction</u>	<u>Comments</u>
Activated Carbon Material (First Fill of Media) *	\$ 516,923	\$ 227,446	SCS Estimate ^{1**}	
Activated Carbon System *	\$ 450,000	\$ 198,000	SCS Estimate ^{1**}	
Activated Carbon Installation *	\$ 654,160	\$ 287,830	SCS Estimate ^{1**}	
Permitting and Design	\$ 100,000	\$ 100,000	SCS Estimate ²	
Sales Taxes@ 6%	\$ 97,265	\$ 42,797	For Purchase of Major Equipment ³	
Contingency @10%	\$ 181,835	\$ 85,607	Based on 10% contingency ⁴	
Total Capital Cost		\$ 941,680		

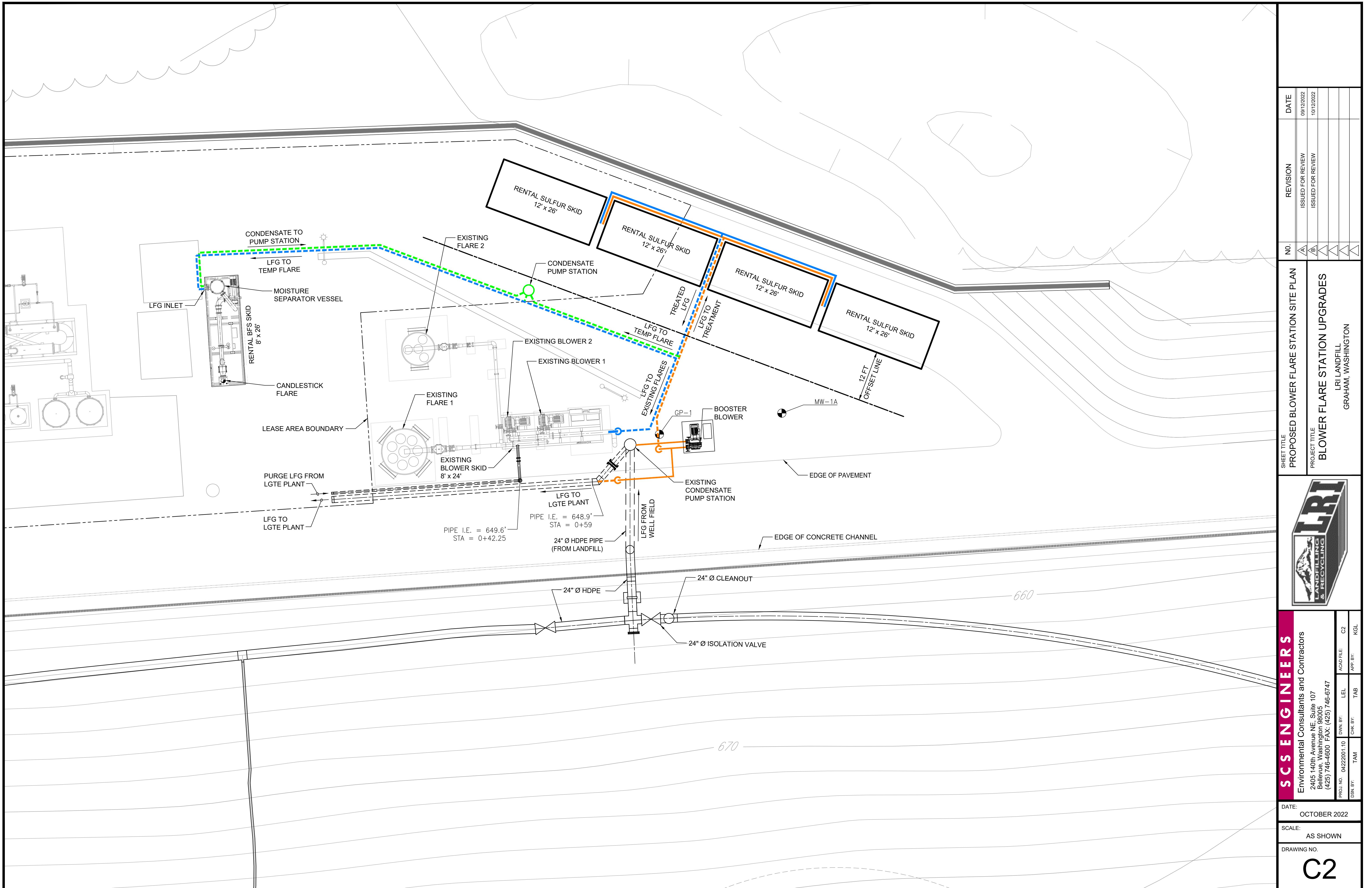
*Based on Chiquita LFG Flow of 5,000 scfm

**Multiplied by ratio of Site-Wide Maximum flow of 2,200 scfm to Chiquita's 5,000 scfm

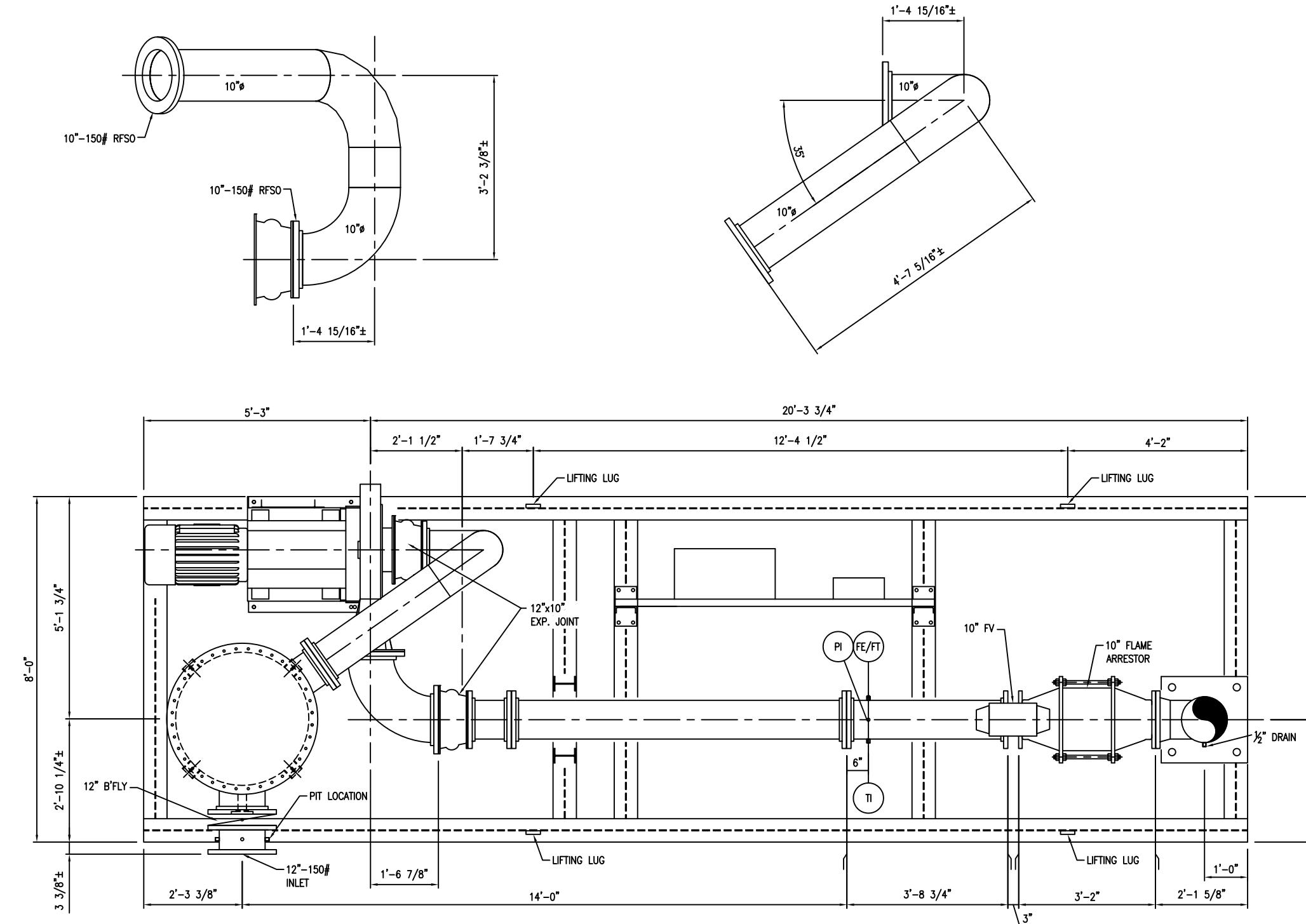
<u>Annual Operating Cost (for Activated Carbon System) and Estimated Overhaul/Media Replacement Cost</u>	<u>Annual Cost</u>	<u>Cost for SOx Reduction**</u>	<u>Comments</u>
Media Cost*	\$ 568,615	\$ 568,615	SCS Estimate ^{1**}
Disposal*	\$ 98,824	\$ 98,824	SCS Estimate ^{5**}
Transportation*	\$ 9,900	\$ 9,900	SCS Estimate ^{6**}
Labor*	\$ 9,900	\$ 9,900	SCS Estimate ^{6**}
Power*	\$ 18,000	\$ 18,000	SCS Estimate ^{1**}
Maintenance	\$ 35,712	\$ 35,712	SCS Estimate ⁷
Vessel Repair Replacement Costs	\$ 11,880	\$ 11,880	SCS Estimate ⁸
Miscellaneous	\$ 4,071	\$ 4,071	SCS Estimate ⁹
Contingency @10%	\$ 75,690	\$ 75,690	Based on 10% contingency ⁴
Total Annual Operating and Replacement Cost		\$ 832,592	
Overhead (60% of Labor Costs)		\$ 5,940	USEPA Cost Estimate Manual, Section 2.6.5.7
Property Tax (1% of Total Capital Cost)		\$ 9,417	USEPA Cost Estimate Manual, Section 2.6.5.8
Insurance (1% of Total Capital Cost)		\$ 9,417	USEPA Cost Estimate Manual, Section 2.6.5.8
General & Administrative (2% of Total Capital Cost)		\$ 18,834	USEPA Cost Estimate Manual, Section 2.6.5.8
Capital Recovery (CRF x Total Capital Cost)	0.545 CRF	513,627	USEPA Cost Estimate Manual, Equation 2.8a ¹⁰
Total Annual Operating Cost		\$ 1,389,826	
Total Annual Cost		\$ 1,389,826	

*Based on Chiquita LFG Flow of 5,000 scfm

Cost Effectiveness of Activated Carbon System:


Cost effectiveness (\$/ton) = (Annual cost \$/year) / (District Standard Emissions - Emissions (w/tech feas BACT) (ton/year))		
Cost Effectiveness \$ 1,389,826.35	163.39 ton/year	\$8,506.37 /ton
Proposed SOx Cost Effectiveness		

Notes


- ¹ Estimates for capital costs for initial activated carbon system purchase and installation are based on estimates obtained from SCS Engineers from previous estimates for the Chiquita Landfill
- ² The design, permitting, and startup costs for the system were estimates made by SCS Engineers from recent experience
- ³ Applied at 8.75% rate for major equipment purchases
- ⁴ A 10% contingency was applied and considered reasonable for the uncertainties with this project
- ⁵ SCS estimates \$0.15/lb cleanout and \$350/ton or \$0.175/lb disposal cost as hazardous waste
- ⁶ SCS estimate based on \$9,000 per changeout and 1.1 changeouts per year.
- ⁷ SCS estimate 5% of capital costs, less media
- ⁸ SCS estimate using 50% of the activated carbon system costs every 10 years plus 20% installation costs
- ⁹ SCS estimates 0.5% of capital costs, less media plus \$500 equipment rental
- ¹⁰ Indirect costs based on USEPA Cost Estimation Manual, equation 2.8a. $CRF = i(1+i)^n / (1+i)^n - 1$, where n = 2 years, i = 0.06 interest rate

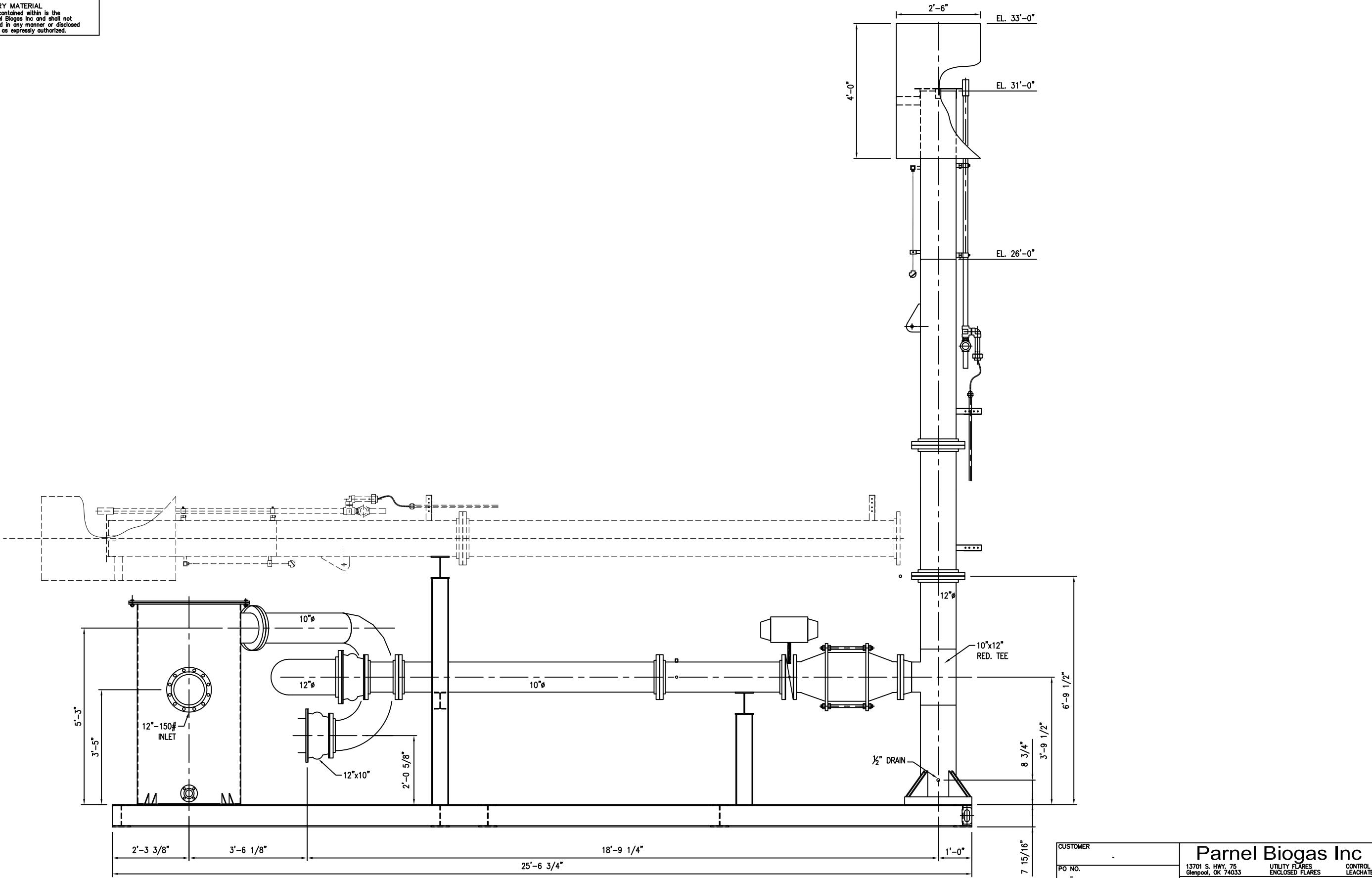
Attachment F

Flare Design Documents and Location

PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.

PLAN VIEW

NOTES:
1. 304SS SCH. 10 UNLESS OTHERWISE NOTED


REV	DESCRIPTION	DATE	DR.	APP.	DRAWN		DATE	DESIGN	DRAWN	DATE	DESIGN	SIZE	DWG NO.	
					AR	JP			AR	JP	AR			
0	ISSUED FOR LAYOUT INFORMATION	11/1/21	AR	JP								11/21	D	RENTAL #1-301

CUSTOMER		Parnel Biogas Inc	
PO NO.		13701 S. HWY. 75 Glenpool, OK 74033	
LOCATION		UTILITY FLARES ENCLOSED FLARES CONTROL SYSTEMS LEACHATE INJECTION	
USER			
DRAWN	DATE	DRAWN	DATE
AR	11/21	AR	11/21
DESIGN		DESIGN	
AR		AR	
SIZE	DWG NO.	SIZE	DWG NO.
D	RENTAL #1-301	0	0
SCALE	NONE	REL DATE	SHEET
			1 OF 1

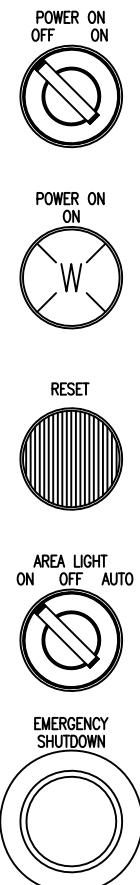
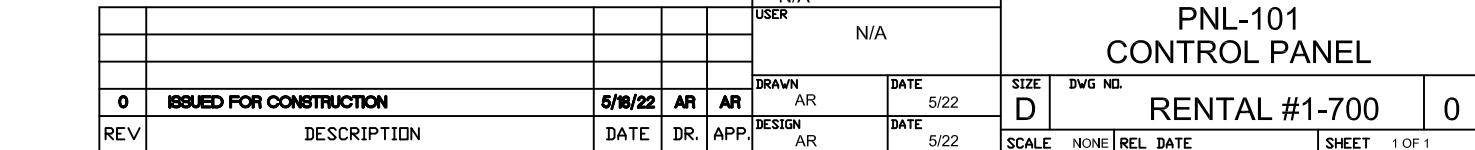
PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.

8 7 6 5 4 3 2 1

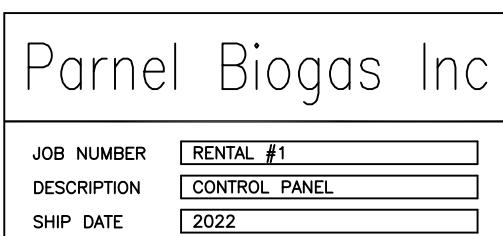
D D
C C
B B
A A

0	ISSUED FOR LAYOUT INFORMATION	11/11/21	AR	JP	DRAWN	DATE	11/21	SIZE	DWG NO.	GENERAL ARRANGEMENT	
										RENTAL #1-302	0
REV	DESCRIPTION	DATE	DR.	APP.	DESIGN	DATE	11/21	SCALE	NONE	REL DATE	SHEET 1 OF 1

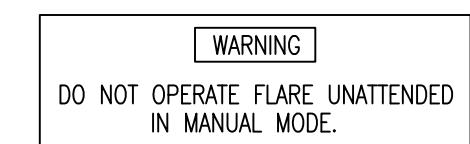
Parnel Biogas Inc
13701 S. HWY. 75
Glenpool, OK 74033
UTILITY FLARES
ENCLOSED FLARES
CONTROL SYSTEMS
LEACHATE INJECTION
TITLE
GENERAL ARRANGEMENT
SKID AND PIPING DETAILS
ELEV. VIEW

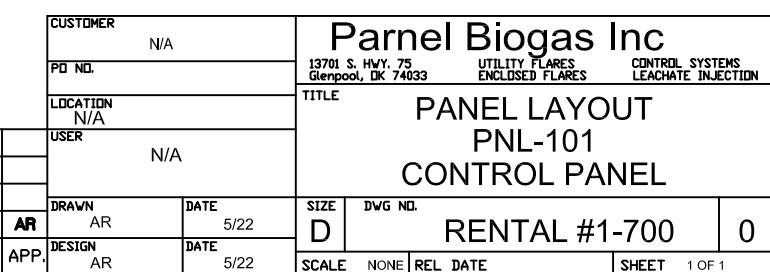


PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.

This technical drawing illustrates the assembly of a flare unit. The overall width is indicated as 2'-0" at the top center. The height of the main unit is indicated as 2'-0" on the left side. The drawing shows two main components: a top section and a bottom section. The top section is a rectangular frame with a central rectangular cutout. The bottom section is a rectangular frame with a central rectangular cutout and a small circular component at the bottom. Both sections have a double-line border. Callouts labeled "SEE DETAIL 'C'" and "SEE DETAIL 'B'" point to the bottom section. A text box at the bottom left contains the warning: "DO NOT OPERATE FLARE UNATTENDED IN MANUAL MODE." The drawing includes several small circles and lines, likely representing mounting holes or assembly details. The text "ALLIED MOULDED PRODUCTS, INC. BRYAN, OHIO" is printed on the top section, and "ANHMI164" is printed on the bottom section.

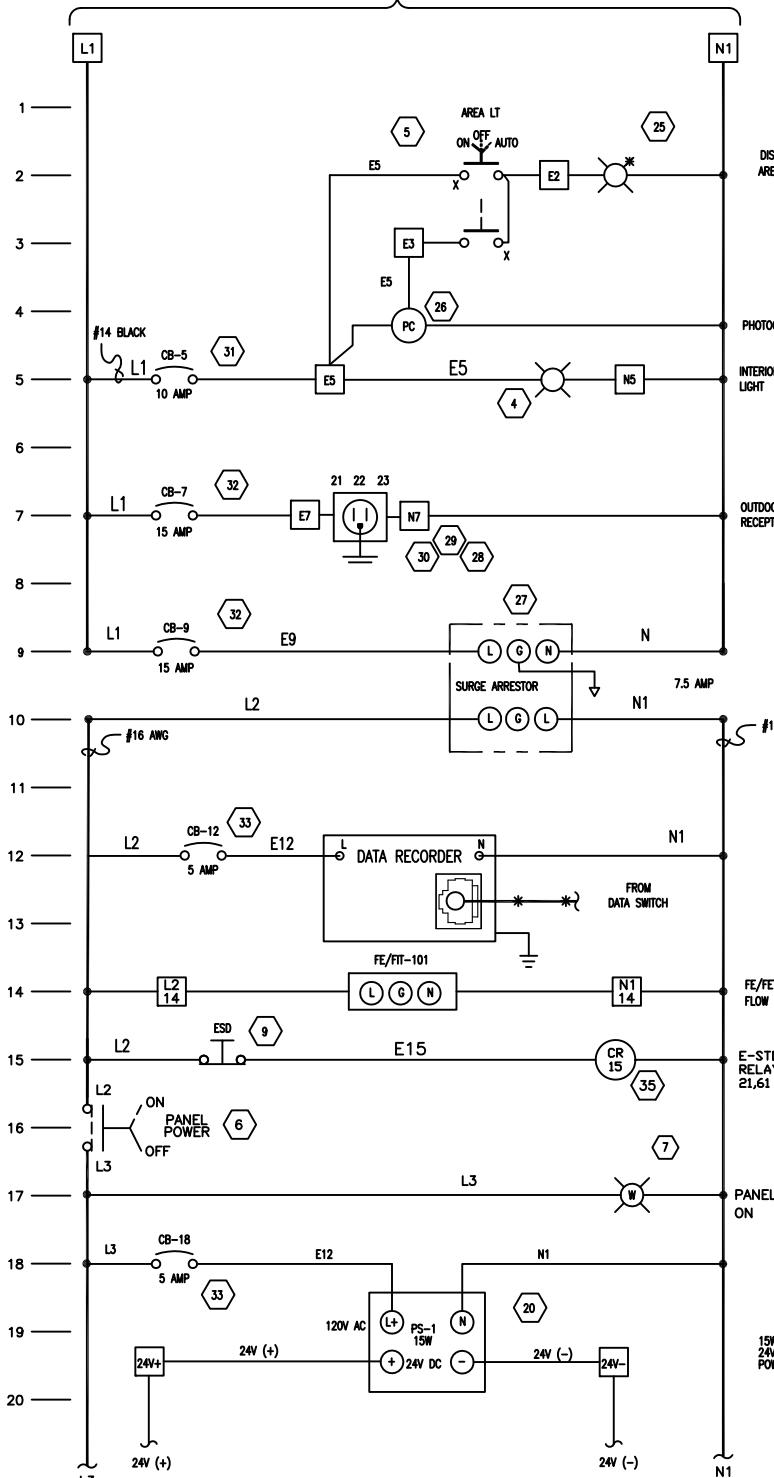

FRONT VIE

END VIE

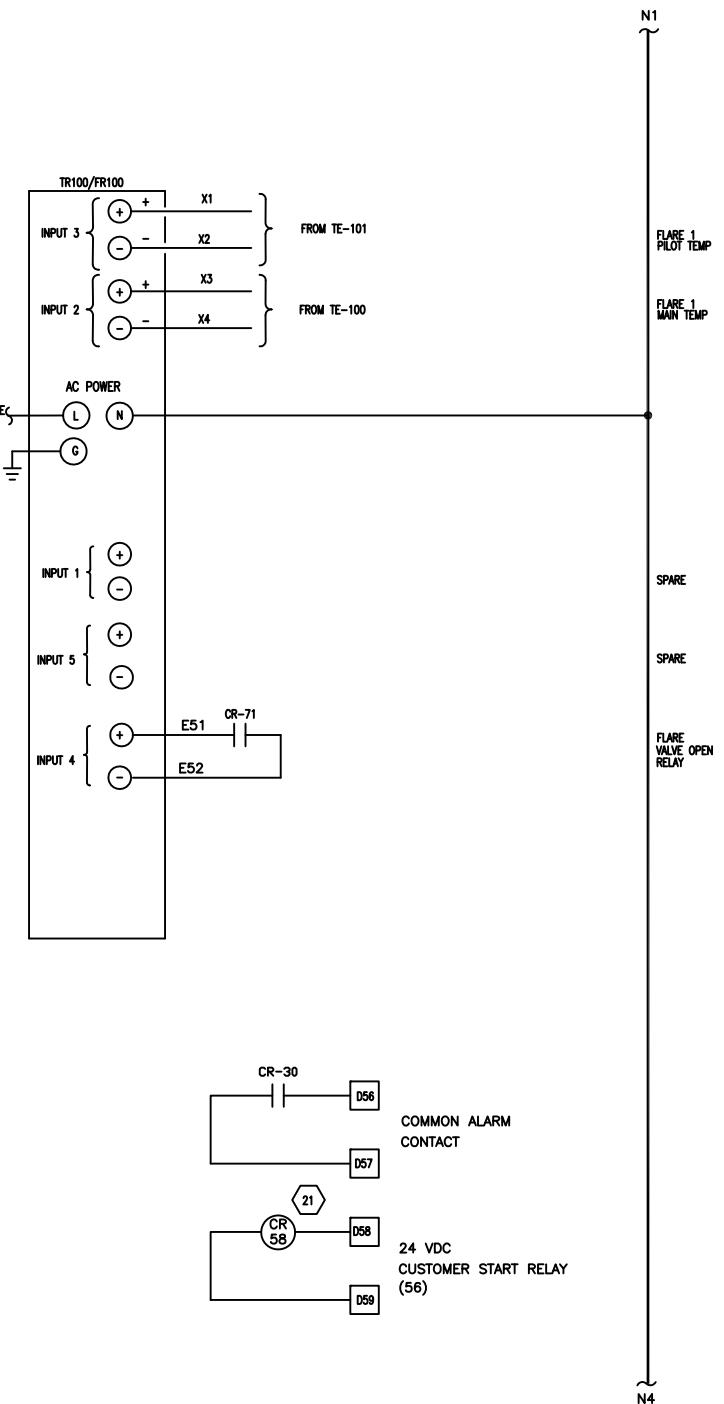
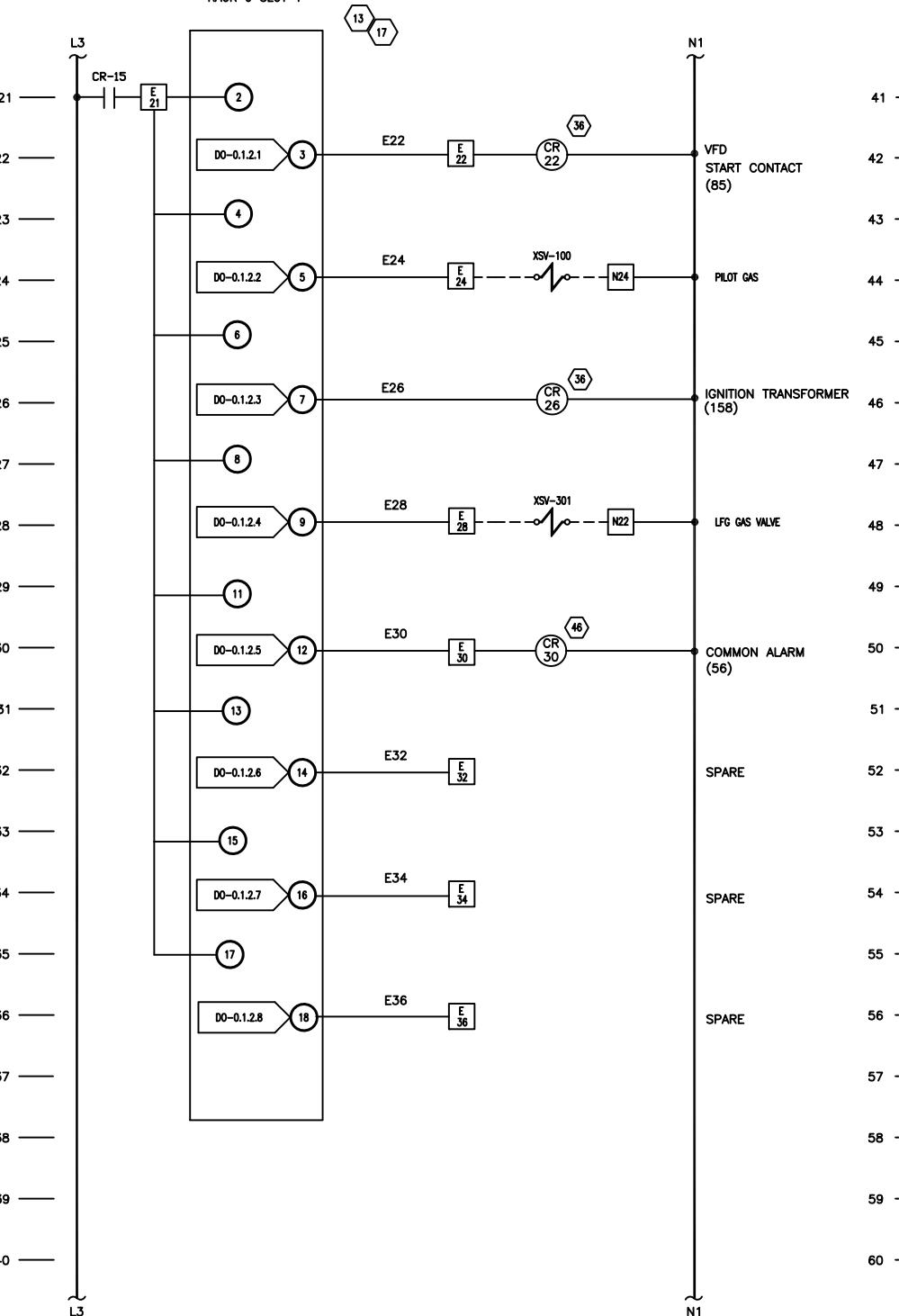

1. PANEL IS NEMA 4, NON-CLASSIFIED. AREA CLASSIFICATION IS CLASS 1 DIV2, GROUP D WITHIN 3' FT OF ANY GA
2. ALL TAGS TO BE WHITE WITH BLACK LETTERS.
3. CONDUIT SEALS ARE TO BE USED AT TRANSITIONS BETWEEN CLASSIFIED AND UNCLASSIFIED AREAS.
4. GROUNDING STRAPS MOUNTED ON ALL PANEL DOORS.


DETAIL "A"

DETAIL "B"



DETAIL "C"

PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.

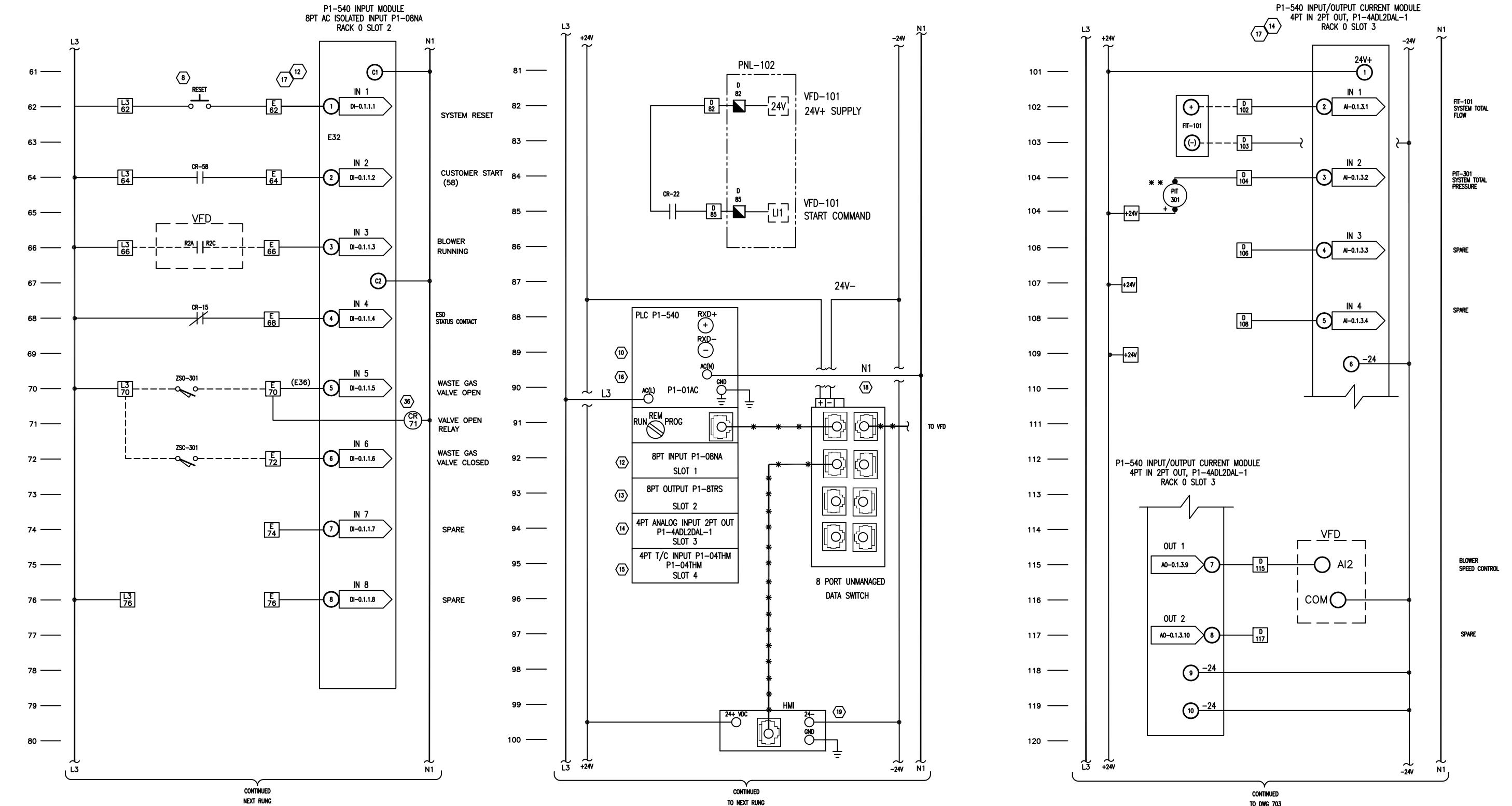
120VAC, 60HZ, 1Ø
15 AMP

P1-540 OUTPUT MODULE
8 PT ISOLATED OUTPUT RELAY P1-
RACK 0 SLOT 1

LEGEND:

— PNL-101 TERMINAL

— PNL-102 TERMINAL



WIRING BY PARNEL

— FIELD WIRING BY FARNEL
xx DENOTES ITEMS SUPPLIED BY OTHERS, NOT FARNEL

				CUSTOMER N/A	Parnel Biogas Inc				
				PO NO. N/A	5868 S 129TH E. AVE Tulsa, OK 74134	UTILITY FLARES ENCLOSED FLARES			
				LOCATION	CONTROL SYSTEMS LEACHATE INJECTION				
				USER N/A	TITLE PNL-101 LADDER LOGIC				
0				DRAWN KDG	DATE 5/16	SIZE D	DWG NO. RENTAL #1-701	0	
REV	DESCRIPTION	DATE	DR.	APP	DESIGN CP	DATE 5/16	SCALE	REL DATE	SHEET 1 OF 1

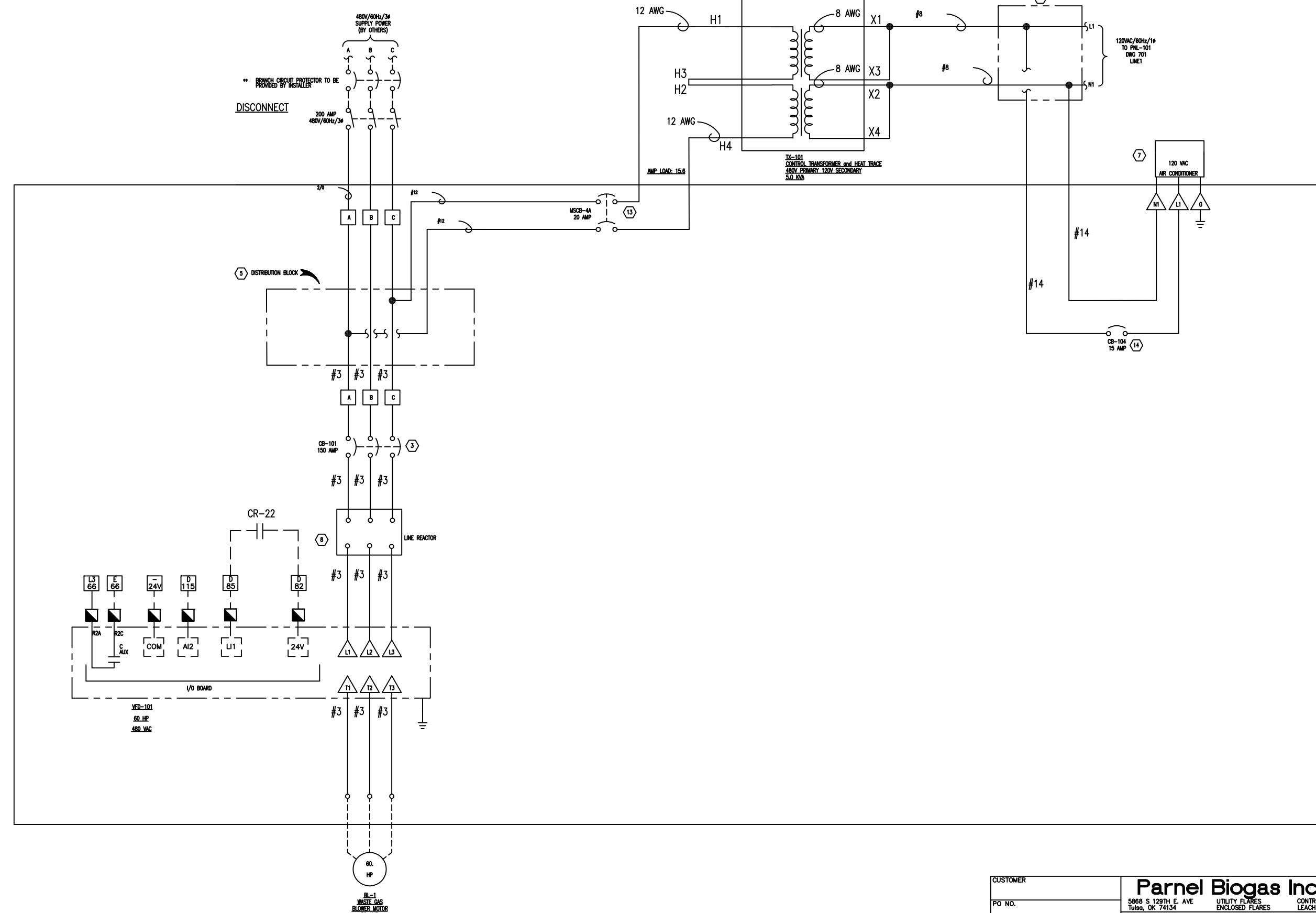
PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.

LEGEND:
□ — CE-101 TERMINAL

— WIRING BY PARNEL
- - - FIELD WIRING BY PARNEL

* * DENOTES ITEMS SUPPLIED BY OTHERS, NOT PARNEL

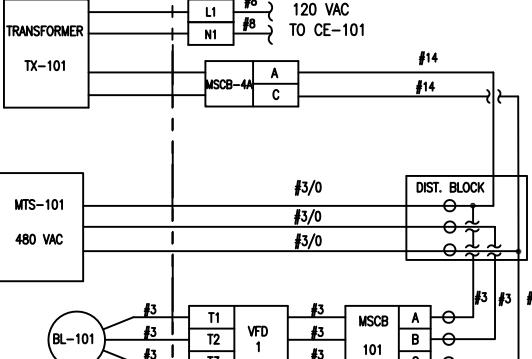
NOTES:


1. AC WIRING FOR 480VAC AND LOWER SHALL BE YELLOW 600 VOLT INSULATION, TYPE THWN/THHN, 14 AWG MINIMUM.
2. DC WIRING FOR 24 VDC AND LOWER SHALL BE BLUE 600 VOLT INSULATION, -24 VDC COMMON SHALL BE BLUE/WHITE 600 VOLT INSULATION, TYPE THWN/THHN, 14 AWG MINIMUM.

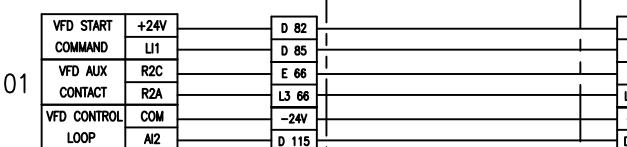
REV	DESCRIPTION	DATE	DR. APP.	DESIGN	DWG NO.
		5/21		KDG	RENTAL #1-702

CUSTOMER N/A	Parnel Biogas Inc	
PO NO. N/A	13701 S HWY 75 GLENPOOL, OK 74033	UTILITY FLARES ENCLOSED FLARES
LOCATION N/A		CONTROL SYSTEMS LEACHATE INJECTION
USER N/A		
DRAWN CG	DATE 5/21	SIZE D
		DWG NO. RENTAL #1-702
SCALE	REL DATE	Sheet 1 OF 1

PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.


CUSTOMER		Parnel Biogas Inc	
PO NO.		5868 S 129TH E. AVE Tulsa, OK 74134	
LOCATION		UTILITY FLARES ENCLOSED FLARES	
USER		CONTROL SYSTEMS LEACHATE INJECTION	
DRAWN	DATE	SIZE	DWG NO.
0		D	RENTAL#1-704
REV	DESCRIPTION	DATE	DR. APP.
		DESIGN	DATE
		SCALE	REL DATE
			SHEET 1 OF 1

PROPRIETARY MATERIAL
The information contained within is the
property of Parnel Biogas Inc and shall not
be copied or used in any manner or disclosed
to others except as expressly authorized.


PNL-102

PANEL INTERCONNECTIONS

CE-101

VFD-101

LEGEND:
 □ — CE-101 TERMINAL
 ▲ — PNL-102 TERMINAL
 ▽ — PNL-103 TERMINAL
 ○ — DENOTES ITEM NUMBER OF PANEL BILL OF MATERIAL
 4. — ELECTRICAL SIGNAL
 1. ** DENOTES ITEMS SUPPLIED BY OTHERS, NOT PARNEL.

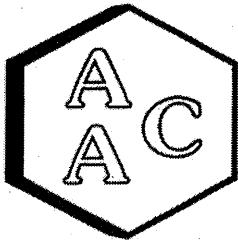
1. PANEL TO BE BUILT PER UL 508A.
2. AC WIRING FOR 120VAC AND LOWER SHALL BE YELLOW 600 VOLT INSULATION, TYPE THWN/THHN, 16 AWG MINIMUM.
3. DC WIRING FOR 24 VDC AND LOWER SHALL BE BLUE 600 VOLT INSULATION, -24 VDC COMMON SHALL BE BLUE/WHITE 600 VOLT INSULATION, TYPE THWN/THHN, 16 AWG MINIMUM.
4. ELECTRICAL SIGNAL

1. ** DENOTES ITEMS SUPPLIED BY OTHERS, NOT PARNEL. INSULATION, TYPE THWN/THHN, 16 AWG MINIMUM.

PT-100

+
—

2 COND SHLD


24V+

D 104

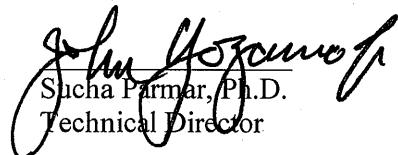
—

D 104

Attachment G
Sulfur and Volatile Organics Sampling Laboratory
Reports

Atmospheric Analysis & Consulting, Inc.

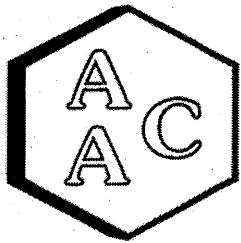
CLIENT : SCS Engineers
PROJECT NAME : H2S Sampling and Analysis
PROJECT NO. : 04223001.20
AAC PROJECT NO. : 231087
REPORT DATE : 06/08/2023


On June 7th 2023, Atmospheric Analysis & Consulting, Inc. received four (4) Six-Liter Summa Canisters for Fixed Gases analysis by EPA 3C and Reduced Sulfur analysis by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
Sample 1- MP-1H2S Inlet	231087-45273	563.1
Sample 2- MP-1 Backup	231087-45274	442.2
Sample 3- MP-3 H2S Outlet	231087-45275	514.6
Sample 4-MP-3 Backup	231087-45276	523.2

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. As per client request, all backup samples were placed on hold. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.


If you have any questions or require further explanation of data results, please contact the undersigned.

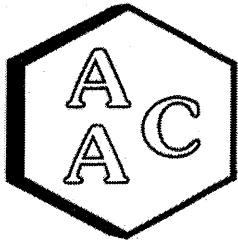
Sucha Parmar, Ph.D.
Technical Director

This report consists of 5 pages.

Page 1

Laboratory Analysis Report

CLIENT : SCS Engineers
PROJECT NO. : 231087
MATRIX : AIR


SAMPLING DATE : 06/06/2023
RECEIVING DATE : 06/07/2023
ANALYSIS DATE : 06/07/2023
REPORT DATE : 06/08/2023

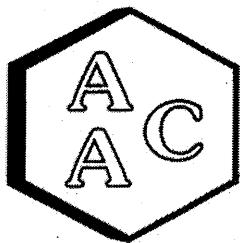
EPA 3C

Client ID	Sample 1- MP-1H2S Inlet	Sample 3- MP-3 H2S Outlet
AAC ID	231087-45273	231087-45275
Can Dilution Factor	2.72	2.99
Analyte	Result	Result
H ₂	< 2.7 %	< 3.0 %
O ₂	1.2 %	1.0 %
N ₂	15.1 %	14.6 %
CO	< 0.3 %	< 0.3 %
CO ₂	36.5 %	36.9 %
CH ₄	47.1 %	47.5 %

All fixed gases have been normalized to 100% on a dry basis

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac

LABORATORY ANALYSIS REPORT


CLIENT : SCS Engineers
PROJECT NO. : 231087
MATRIX : AIR
UNITS : ppmv

SAMPLING DATE : 06/06/2023
RECEIVING DATE : 06/07/2023
ANALYSIS DATE : 06/08/2023
REPORT DATE : 06/08/2023

Total Reduced Sulfur Compounds by ASTM D-5504

Client ID	Sample 1- MP-1H2S Inlet	Sample 3- MP-3 H2S Outlet
AAC ID	231087-45273	231087-45275
Canister Dil. Fac.	2.7	3.0
Analyte	Result	Result
Hydrogen Sulfide	1885	282
COS / SO2	1.28	2.04
Methyl Mercaptan	11.0	3.19
Ethyl Mercaptan	0.575	< 0.149
Dimethyl Sulfide	8.46	8.57
Carbon Disulfide	0.335	0.289
Isopropyl Mercaptan	3.84	< 0.149
tert-Butyl Mercaptan	0.764	< 0.149
n-Propyl Mercaptan	< 0.136	< 0.149
Methylethylsulfide	< 0.136	< 0.149
sec-Butyl Mercaptan / Thiophene	3.70	< 0.149
iso-Butyl Mercaptan	0.544	< 0.149
Diethyl Sulfide	< 0.136	< 0.149
n-Butyl Mercaptan	< 0.136	< 0.149
Dimethyl Disulfide	< 0.136	< 0.149
2-Methylthiophene	0.670	< 0.149
3-Methylthiophene	< 0.136	< 0.149
Tetrahydrothiophene	< 0.136	< 0.149
Bromoethane	< 0.136	< 0.149
Thiophenol	< 0.136	< 0.149
Diethyl Disulfide	< 0.136	< 0.149
Total Unidentified Sulfur	< 0.136	1.40
Total Reduced Sulfurs	1915	295

All unidentified compound's concentrations expressed in terms of H₂S
Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed : 06/07/2023
 Analyst : RW/KM
 Units : %

Instrument ID : TCD #1
 Calb Date : 08/22/22
 Reporting Limit : 0.1%

I - Opening Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	9.6	10.4	22.7	9.9	8.9	9.8
	% Rec *	96.1	102.0	112.0	99.0	89.2	97.8

II - Method Blank - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
MB	Concentration	ND	ND	ND	ND	ND	ND

III - Laboratory Control Spike & Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
Lab Control Standards	Sample Conc	0.0	0.0	0.0	0.0	0.0	0.0
	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	LCS Result	10.0	10.3	22.6	10.2	9.1	10.0
	LCSD Result	9.7	10.3	22.7	10.0	9.2	10.0
	LCS % Rec *	99.9	101.3	111.6	101.8	91.5	100.1
	LCSD % Rec *	97.0	101.6	111.9	100.3	92.4	99.5
	% RPD ***	2.9	0.3	0.3	1.5	0.9	0.6

IV - Sample & Sample Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
230997-44790	Sample	0.0	0.0	1.6	92.5	0.0	1.0
	Sample Dup	0.0	0.0	1.5	92.3	0.0	0.9
	Mean	0.0	0.0	1.6	92.4	0.0	0.9
	% RPD ***	0.0	0.0	8.0	0.2	0.0	1.7

V - Matrix Spike & Duplicate- EPA 3C

AAC ID	Analyte	H ₂	N ₂	CH ₄	CO	CO ₂
230997-44790	Sample Conc	0.0	0.8	46.2	0.0	0.5
	Spike Conc	10.0	10.0	10.0	10.0	10.0
	MS Result	9.9	11.3	57.0	9.3	10.6
	MSD Result	10.1	11.6	56.5	9.2	10.7
	MS % Rec **	99.5	105.2	108.2	93.4	101.4
	MSD % Rec **	101.1	107.7	103.1	92.3	102.5
	% RPD ***	1.6	2.3	4.8	1.1	1.0

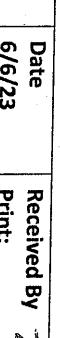
VI - Closing Continuing Calibration Verification - EPA 3C

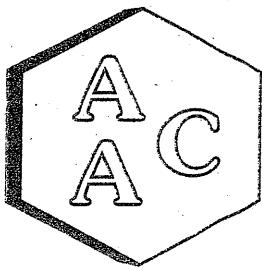
AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	9.7	9.7	20.9	10.1	8.9	10.1
	% Rec *	97.3	95.7	103.4	100.9	89.6	100.3

* Must be 85-115%

** Must be 75-125%

*** Must be < 25%


ND = Not Detected


<RL = less than Reporting Limit

CHAIN OF CUSTODY AND ANALYSIS REQUEST

230162

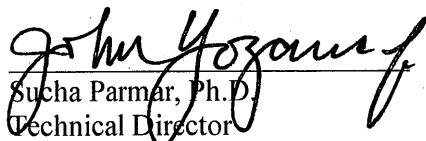
Atmospheric Analysis and Computer Model Results. **Print or Type** in all capital letters. **Initials** are acceptable. **Signature** is a LEGAL DOCUMENT. Complete all relevant fields.

Client/Company Name LRI Facility		Project Name H2S Sampling and Analysis		Analysis Requested		AAC Project No.: Send Report To (Name/Email/Address)	
Project Manager Name Karamjit Singh		Project Number 04223001.20		Send Invoice To (Name/Email/Address) Karamjit Singh KSingh@Scsengineers.com			
Turnaround Time <input checked="" type="checkbox"/> Rush 24 h <input type="checkbox"/> Same Day <input type="checkbox"/> Rush 48 h <input type="checkbox"/> 5 Days <input type="checkbox"/> Rush 72 h <input type="checkbox"/> Normal		Sampler Name Print: John Faille Signature:		ASTM D-5504 (Include TRS) EPATO 15 EPA 3C			
Client Sample Name Sample 1 – MP-1 H2S Inlet		Sample ID OCC719	Sampling Date 6/6/23	Sampling Time 08:00	Container Type/Qty X	Lab ID via: <input type="checkbox"/> FedEx <input type="checkbox"/> UPS <input type="checkbox"/> Courier <input type="checkbox"/> Other	Sample Received Initials _____
Sample 2 – MP-1 Backup		OCC676	6/6/23	08:00	X	Thermometer ID Initials _____	Temperature °C Initials _____
Sample 3 – MP-3 H2S Outlet		OCS11	6/6/23	08:00	X	Returned Eqmt Total cans: _____	Unused cans: _____
Sample 4 – MP-3 Backup		OCC310	6/6/23	08:00		Flow Controllers Initials _____	
Client Notes/Special Instructions: Please test only Sample 1 – MP-1 H2S Inlet and Sample 3 – MP-3 H2S Outlet unless there are issues with the samples (no residual vacuum for example). If issue with primary sample please test the corresponding backup instead.		EDD? <input type="checkbox"/> Yes <input type="checkbox"/> No		LAB USE ONLY Notes:			
Relinquished By Print: John Faille Signature:	Date 6/6/23 Time 100	Received By Zachary Smith 	Date 6/7/23 Time 1454				
Relinquished By Print: Signature:	Date Time	Received By Print: Signature:	Date Time				

Atmospheric Analysis & Consulting, Inc.

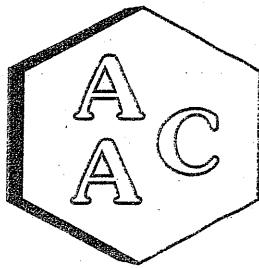
CLIENT : SCS Engineers
PROJECT NAME : LRI Facility
PROJECT NO. : 04223001.20
AAC PROJECT NO. : 231087
REPORT DATE : 06/08/2023

On June 7, 2023, Atmospheric Analysis & Consulting, Inc. received four (4) 1.4-Liter Silonite Canisters for Volatile Organic Compounds analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:


Client ID	Lab ID	Return Pressure (mmHg)
Sample 1—MP-1 H2S Inlet	231087-45273	563.1
Sample 2—MP-1 Backup	231087-45274	442.2
Sample 3—MP-3 H2S Outlet	231087-45275	514.6
Sample 4—MP-3 Backup	231087-45276	523.2

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.


The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

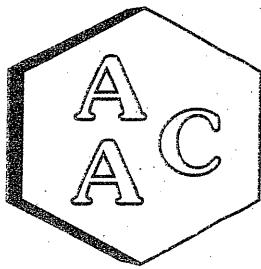
Sucha Parmar, Ph.D.
Technical Director

This report consists of 8 pages.

Page 1

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report


CLIENT : SCS Engineers
 PROJECT NO : 231087
 MATRIX : AIR
 UNITS : PPB (v/v)

DATE RECEIVED : 06/07/2023
 DATE REPORTED : 06/08/2023
 ANALYST : DL/CH

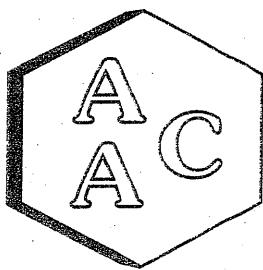
VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID	Sample 1—MP-1 H2S Inlet				Sample 3—MP-3 H2S Outlet				Sample Reporting Limit (SRL) (MRLxDF's)	Method Reporting Limit (MRL)		
	231087-45273				231087-45275							
	06/06/2023				06/06/2023							
	06/08/2023				06/08/2023							
	2.72				2.99							
Compound	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF					
Chlorodifluoromethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Propene	16500		500	1360	17900		500	1490	1.00			
Dichlorodifluoromethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Chloromethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Dichlorotetrafluoroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Vinyl Chloride	<SRL	U	500	680	<SRL	U	500	747	0.50			
Methanol	19900		500	6800	17400		500	7470	5.00			
1,3-Butadiene	<SRL	U	500	680	<SRL	U	500	747	0.50			
Bromomethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Chloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Dichlorofluoromethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Ethanol	57500		500	2720	44600		500	2990	2.00			
Vinyl Bromide	<SRL	U	500	680	<SRL	U	500	747	0.50			
Acetone	21700		500	2720	22500		500	2990	2.00			
Trichlorofluoromethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
2-Propanol (IPA)	13100		500	2720	9340		500	2990	2.00			
Acrylonitrile	<SRL	U	500	680	<SRL	U	500	747	0.50			
1,1-Dichloroethene	<SRL	U	500	680	<SRL	U	500	747	0.50			
Methylene Chloride (DCM)	<SRL	U	500	1360	<SRL	U	500	1490	1.00			
Allyl Chloride	<SRL	U	500	1360	<SRL	U	500	1490	1.00			
Carbon Disulfide	<SRL	U	500	2720	<SRL	U	500	2990	2.00			
Trichlorotrifluoroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
trans-1,2-Dichloroethene	<SRL	U	500	680	<SRL	U	500	747	0.50			
1,1-Dichloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Methyl Tert Butyl Ether (MTBE)	<SRL	U	500	680	<SRL	U	500	747	0.50			
Vinyl Acetate	<SRL	U	500	1360	<SRL	U	500	1490	1.00			
2-Butanone (MEK)	13900		500	1360	12000		500	1490	1.00			
cis-1,2-Dichloroethene	<SRL	U	500	680	<SRL	U	500	747	0.50			
Hexane	924		500	680	957		500	747	0.50			
Chloroform	<SRL	U	500	680	<SRL	U	500	747	0.50			
Ethyl Acetate	2220		500	680	2110		500	747	0.50			
Tetrahydrofuran	4460		500	680	4400		500	747	0.50			
1,2-Dichloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
1,1,1-Trichloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50			
Benzene	4970		500	680	3890		500	747	0.50			

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

CLIENT : SCS Engineers
 PROJECT NO : 231087
 MATRIX : AIR
 UNITS : PPB (v/v)


DATE RECEIVED : 06/07/2023
 DATE REPORTED : 06/08/2023
 ANALYST : DL/CH

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Sample 1—MP-1 H2S Inlet			Sample Reporting Limit (SRL) (MRLxDF's)	Sample 3—MP-3 H2S Outlet			Sample Reporting Limit (SRL) (MRLxDF's)	Method Reporting Limit (MRL)
	AAC ID	231087-45273	Date Sampled		231087-45275	Date Analyzed	06/08/2023		
Compound	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF		
Carbon Tetrachloride	<SRL	U	500	680	<SRL	U	500	747	0.50
Cyclohexane	992		500	680	1060		500	747	0.50
1,2-Dichloropropane	<SRL	U	500	680	<SRL	U	500	747	0.50
Bromodichloromethane	<SRL	U	500	680	<SRL	U	500	747	0.50
1,4-Dioxane	<SRL	U	500	1360	<SRL	U	500	1490	1.00
Trichloroethene (TCE)	<SRL	U	500	680	<SRL	U	500	747	0.50
2,2,4-Trimethylpentane	<SRL	U	500	680	<SRL	U	500	747	0.50
Heptane	1660		500	680	1440		500	747	0.50
cis-1,3-Dichloropropene	<SRL	U	500	680	<SRL	U	500	747	0.50
4-Methyl-2-pentanone (MIBK)	1140		500	680	<SRL	U	500	747	0.50
trans-1,3-Dichloropropene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,1,2-Trichloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50
Toluene	9430		500	680	3870		500	747	0.50
2-Hexanone (MBK)	<SRL	U	500	1360	<SRL	U	500	1490	1.00
Dibromochloromethane	<SRL	U	500	680	<SRL	U	500	747	0.50
1,2-Dibromoethane	<SRL	U	500	680	<SRL	U	500	747	0.50
Tetrachloroethene (PCE)	<SRL	U	500	680	<SRL	U	500	747	0.50
Chlorobenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
Ethylbenzene	3630		500	680	1480		500	747	0.50
m & p-Xylene	5980		500	1360	2360		500	1490	1.00
Bromoform	<SRL	U	500	680	<SRL	U	500	747	0.50
Styrene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,1,2,2-Tetrachloroethane	<SRL	U	500	680	<SRL	U	500	747	0.50
o-Xylene	2090		500	680	882		500	747	0.50
4-Ethyltoluene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,3,5-Trimethylbenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,2,4-Trimethylbenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
Benzyl Chloride (a-Chlorotoluene)	<SRL	U	500	680	<SRL	U	500	747	0.50
1,3-Dichlorobenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,4-Dichlorobenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,2-Dichlorobenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
1,2,4-Trichlorobenzene	<SRL	U	500	680	<SRL	U	500	747	0.50
Hexachlorobutadiene	<SRL	U	500	680	<SRL	U	500	747	0.50
BFB-Surrogate Std. % Recovery			95%				95%		70-130%

U - Compound was not detected at or above the SRL.

Atmospheric Analysis & Consulting, Inc.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 06/14/1902

MATRIX : High Purity N₂

UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-02

CALIBRATION STD ID : MSI-042023-02

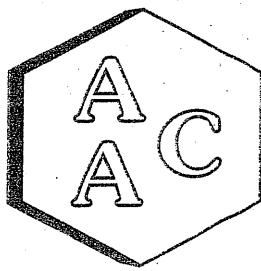
ANALYST : DL

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 10/17/1902 Calibration

Analyte Compounds	Source ¹	CCV ²	% Recovery ³
4-BFB (surrogate standard)	9.60	9.65	101
Chlorodifluoromethane	10.40	9.55	92
Propene	10.60	9.00	85
Dichlorodifluoromethane	10.40	10.39	100
Dimethyl Ether	10.20	9.42	92
Chloromethane	10.40	9.37	90
Dichlorotetrafluoroethane	10.30	10.13	98
Vinyl Chloride	10.50	9.95	95
Acetaldehyde	21.10	22.99	109
Methanol	18.80	16.10	86
1,3-Butadiene	10.60	9.53	90
Bromomethane	10.40	9.69	93
Chloroethane	10.30	9.07	88
Dichlorodifluoromethane	10.20	9.59	94
Ethanol	11.20	9.64	86
Vinyl Bromide	10.10	9.35	93
Acrolein	11.10	9.33	84
Acetone	10.60	9.19	87
Trichlorodifluoromethane	10.50	9.69	92
2-Propanol (IPA)	11.00	9.45	86
Acrylonitrile	11.20	9.36	84
1,1-Dichloroethene	10.40	9.38	90
Methylene Chloride (DCM)	10.50	9.47	90
TertButanol (TBA)	11.10	9.54	86
Allyl Chloride	10.20	9.28	91
Carbon Disulfide	10.50	9.40	90
Trichlorotrifluoroethane	10.40	9.35	90
trans-1,2-Dichloroethene	10.60	9.14	86
1,1-Dichloroethane	10.50	8.93	85
Methyl Tert Butyl Ether (MTBE)	10.50	7.84	75
Vinyl Acetate	11.00	8.93	81
2-Butanone (MEK)	10.60	8.26	78
cis-1,2-Dichloroethene	10.50	9.13	87
Hexane	10.70	8.57	80
Chloroform	10.60	9.21	87
Ethyl Acetate	10.60	8.58	81
Tetrahydrofuran	10.20	7.74	76
1,2-Dichloroethane	10.50	8.66	82
1,1,1-Trichloroethane	10.40	9.01	87
Benzene	10.60	9.52	90
Carbon Tetrachloride	10.20	9.41	92
Cyclohexane	10.50	8.98	86

Analyte Compounds (Continued)	Source ¹	CCV ²	% Recovery ³
1,2-Dichloropropane	10.50	9.31	89
Bromodichloromethane	10.40	9.59	92
1,4-Dioxane	10.40	9.34	90
Trichloroethene (TCE)	10.40	9.80	94
2,2,4-Trimethylpentane	10.00	8.98	90
Methyl Methacrylate	11.00	9.40	85
Heptane	10.50	8.92	85
cis-1,3-Dichloropropene	10.40	9.12	88
4-Methyl-2-pentanone (MiBK)	10.40	9.15	88
trans-1,3-Dichloropropene	10.50	9.12	87
1,1,2-Trichloroethane	10.50	9.55	91
Toluene	10.60	9.77	92
2-Hexanone (MBK)	10.50	9.37	89
Dibromochloromethane	10.30	9.86	96
1,2-Dibromoethane	10.60	9.69	91
Tetrachloroethene (PCE)	10.40	9.69	93
Chlorobenzene	10.60	10.25	97
Ethylbenzene	10.50	10.46	100
m & p-Xylene	21.00	21.18	101
Bromoform	10.50	10.83	103
Styrene	10.50	10.33	98
1,1,2,2-Tetrachloroethane	10.50	10.87	104
o-Xylene	10.50	10.58	101
1,2,3-Trichloropropane	11.00	10.57	96
Isopropylbenzene (Cumene)	10.30	10.45	101
α -Pinene	10.70	9.30	87
2-Chlorotoluene	10.30	9.91	96
n-Propylbenzene	10.10	10.29	102
4-Ethyltoluene	10.30	10.65	103
1,3,5-Trimethylbenzene	10.30	10.35	100
β -Pinene	LR	7.15	65
1,2,4-Trimethylbenzene	10.30	10.47	102
Benzyl Chloride (a-Chlorotoluene)	10.40	9.67	93
1,3-Dichlorobenzene	10.40	10.90	105
1,4-Dichlorobenzene	10.30	10.41	101
Sec-ButylBenzene	10.10	10.30	102
1,2-Dichlorobenzene	10.60	10.76	102
n-ButylBenzene	10.20	10.24	100
1,2-Dibromo-3-Chloropropane	10.10	10.05	100
1,2,4-Trichlorobenzene	11.00	11.48	104
Naphthalene	11.50	11.83	103
Hexachlorobutadiene	11.00	10.46	95


¹Concentration of analyte compound in certified source standard.

²Measured result from daily Continuing Calibration Verification (CCV).

³The acceptable range for analyte recovery is 100±30%.

LR - Recovery for this compound was low. Results should be considered estimated.

Atmospheric Analysis & Consulting, Inc.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 06/14/1992

INSTRUMENT ID : GC/MS-02

MATRIX : High Purity N₂

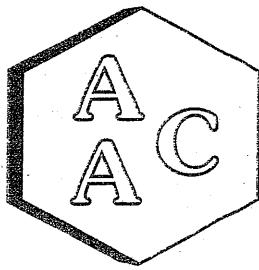
CALIBRATION STD ID : MSI-042023-02

UNITS : PPB (v/v)

ANALYST : DL

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Laboratory Control Spike Analysis


System Monitoring Compounds	Sample Concentration	Spike Added	LCS ¹ Recovery	LCSD ¹ Recovery	LCS ¹ % Recovery ²	LCSD ¹ % Recovery ²	RPD ³
4-BFB (surrogate standard)	0.0	9.60	9.65	9.43	101	98	2.3
1,1-Dichloroethene	0.0	10.40	9.38	9.44	90	91	0.6
Methylene Chloride (DCM)	0.0	10.50	9.47	9.33	90	89	1.5
Benzene	0.0	10.60	9.52	9.37	90	88	1.6
Trichloroethene (TCE)	0.0	10.40	9.80	9.56	94	92	2.5
Toluene	0.0	10.60	9.77	9.77	92	92	0.0
Tetrachloroethene (PCE)	0.0	10.40	9.69	9.59	93	92	1.0
Chlorobenzene	0.0	10.60	10.25	10.18	97	96	0.7
Ethylbenzene	0.0	10.50	10.46	9.81	100	93	6.4
m & p-Xylene	0.0	21.00	21.18	20.22	101	96	4.6
o-Xylene	0.0	10.50	10.58	10.38	101	99	1.9

¹ Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

² The acceptable range for analyte recovery is 100±30%.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

Atmospheric Analysis & Consulting, Inc.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

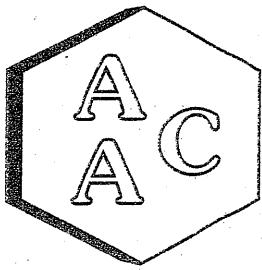
ANALYSIS DATE : 06/14/1902

MATRIX : High Purity He or N₂

UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-02

ANALYST : DL


VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Method Blank Analysis

Analyte Compounds	MB 061402	Reporting Limit (RL)
4-FBF (surrogate standard)	89%	100±30%
Chlorodifluoromethane	<RL	0.5
Propene	<RL	1.0
Dichlorodifluoromethane	<RL	0.5
Dimethyl Ether	<RL	1.0
Chloromethane	<RL	0.5
Dichlorotetrafluoroethane	<RL	0.5
Vinyl Chloride	<RL	0.5
Acetaldehyde	<RL	5.0
Methanol	<RL	5.0
1,3-Butadiene	<RL	0.5
Bromomethane	<RL	0.5
Chloroethane	<RL	0.5
Dichlorodifluoromethane	<RL	0.5
Ethanol	<RL	2.0
Vinyl Bromide	<RL	0.5
Acrolein	<RL	1.0
Acetone	<RL	2.0
Trichlorodifluoromethane	<RL	0.5
2-Propanol (IPA)	<RL	2.0
Acrylonitrile	<RL	0.5
1,1-Dichloroethene	<RL	0.5
Methylene Chloride (DCM)	<RL	1.0
TertButanol (TBA)	<RL	0.5
Allyl Chloride	<RL	1.0
Carbon Disulfide	<RL	2.0
Trichlorotrifluoroethane	<RL	0.5
trans-1,2-Dichloroethene	<RL	0.5
1,1-Dichloroethane	<RL	0.5
Methyl Tert Butyl Ether (MTBE)	<RL	0.5
Vinyl Acetate	<RL	1.0
2-Butanone (MEK)	<RL	1.0
cis-1,2-Dichloroethene	<RL	0.5
Hexane	<RL	0.5
Chloroform	<RL	0.5
Ethyl Acetate	<RL	0.5
Tetrahydrofuran	<RL	0.5
1,2-Dichloroethane	<RL	0.5
1,1,1-Trichloroethane	<RL	0.5
Benzene	<RL	0.5
Carbon Tetrachloride	<RL	0.5
Cyclohexane	<RL	0.5

Analyte Compounds (Continued)	MB 061402	Reporting Limit (RL)
1,2-Dichloropropane	<RL	0.5
Bromoform	<RL	0.5
1,4-Dioxane	<RL	1.0
Trichloroethene (TCE)	<RL	0.5
2,2,4-Trimethylpentane	<RL	0.5
Methyl Methacrylate	<RL	0.5
Heptane	<RL	0.5
cis-1,3-Dichloropropene	<RL	0.5
4-Methyl-2-pentanone (MiBK)	<RL	0.5
trans-1,3-Dichloropropene	<RL	0.5
1,1,2-Trichloroethane	<RL	0.5
Toluene	<RL	0.5
2-Hexanone (MBK)	<RL	1.0
Dibromochloromethane	<RL	0.5
1,2-Dibromoethane	<RL	0.5
Tetrachloroethene (PCE)	<RL	0.5
Chlorobenzene	<RL	0.5
Ethylbenzene	<RL	0.5
m & p-Xylene	<RL	1.0
Bromoform	<RL	0.5
Styrene	<RL	0.5
1,1,2,2-Tetrachloroethane	<RL	0.5
o-Xylene	<RL	0.5
1,2,3-Trichloropropane	<RL	0.5
Isopropylbenzene (Cumene)	<RL	0.5
α -Pinene	<RL	1.0
2-Chlorotoluene	<RL	0.5
n-Propylbenzene	<RL	0.5
4-Ethyltoluene	<RL	0.5
1,3,5-Trimethylbenzene	<RL	0.5
β -Pinene	<RL	2.0
1,2,4-Trimethylbenzene	<RL	0.5
Benzyl Chloride (a-Chlorotoluene)	<RL	0.5
1,3-Dichlorobenzene	<RL	0.5
1,4-Dichlorobenzene	<RL	0.5
Sec-ButylBenzene	<RL	0.5
1,2-Dichlorobenzene	<RL	0.5
n-ButylBenzene	<RL	0.5
1,2-Dibromo-3-Chloropropane	<RL	0.5
1,2,4-Trichlorobenzene	<RL	0.5
Naphthalene	<RL	0.5
Hexachlorobutadiene	<RL	0.5

Atmospheric Analysis & Consulting, Inc.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 06/14/1902

MATRIX : Air

UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-02

ANALYST : DL

DILUTION FACTOR¹ : x5.7

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Duplicate Analysis of AAC Sample ID: 231013-44921

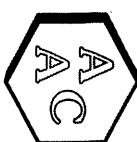
Analyte Compounds	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	9.25	9.31	0.6
Chlorodifluoromethane	<SRL	<SRL	NA
Propene	185	178	4.0
Dichlorodifluoromethane	<SRL	<SRL	NA
Dimethyl Ether	<SRL	<SRL	NA
Chloromethane	<SRL	<SRL	NA
Dichlorotetrafluoroethane	<SRL	<SRL	NA
Vinyl Chloride	<SRL	<SRL	NA
Acetaldehyde	<SRL	<SRL	NA
Methanol	<SRL	<SRL	NA
1,3-Butadiene	<SRL	<SRL	NA
Bromomethane	<SRL	<SRL	NA
Chloroethane	<SRL	<SRL	NA
Dichlorodifluoromethane	<SRL	<SRL	NA
Ethanol	54.6	54.1	0.9
Vinyl Bromide	<SRL	<SRL	NA
Acrolein	<SRL	<SRL	NA
Acetone	91.9	91.6	0.4
Trichlorodifluoromethane	<SRL	<SRL	NA
2-Propanol (IPA)	<SRL	<SRL	NA
Acrylonitrile	<SRL	<SRL	NA
1,1-Dichloroethene	<SRL	<SRL	NA
Methylene Chloride (DCM)	10.8	11.2	4.1
TertButanol (TBA)	<SRL	<SRL	NA
Allyl Chloride	<SRL	<SRL	NA
Carbon Disulfide	13.0	12.1	6.8
Trichlorotrifluoroethane	<SRL	<SRL	NA
trans-1,2-Dichloroethene	<SRL	<SRL	NA
1,1-Dichloroethane	<SRL	<SRL	NA
Methyl Tert Butyl Ether (MTBE)	<SRL	<SRL	NA
Vinyl Acetate	<SRL	<SRL	NA
2-Butanone (MEK)	<SRL	<SRL	NA
cis-1,2-Dichloroethene	349	346	1.0
Hexane	<SRL	<SRL	NA
Chloroform	<SRL	<SRL	NA
Ethyl Acetate	<SRL	<SRL	NA
Tetrahydrofuran	<SRL	<SRL	NA
1,2-Dichloroethane	<SRL	<SRL	NA
1,1,1-Trichloroethane	<SRL	<SRL	NA
Benzene	<SRL	<SRL	NA
Carbon Tetrachloride	<SRL	<SRL	NA
Cyclohexane	<SRL	<SRL	NA

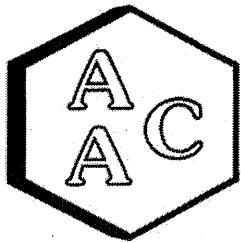
Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
1,2-Dichloropropane	<SRL	<SRL	NA
Bromodichloromethane	<SRL	<SRL	NA
1,4-Dioxane	<SRL	<SRL	NA
Trichloroethene (TCE)	J 2.96	2.79	5.9
2,2,4-Trimethylpentane	<SRL	<SRL	NA
Methyl Methacrylate	<SRL	<SRL	NA
Heptane	<SRL	<SRL	NA
cis-1,3-Dichloropropene	<SRL	<SRL	NA
4-Methyl-2-pentanone (MibK)	<SRL	<SRL	NA
trans-1,3-Dichloropropene	<SRL	<SRL	NA
1,1,2-Trichloroethane	<SRL	<SRL	NA
Toluene	10.4	9.57	8.5
2-Hexanone (MBK)	<SRL	<SRL	NA
Dibromochloromethane	<SRL	<SRL	NA
1,2-Dibromoethane	<SRL	<SRL	NA
Tetrachloroethene (PCE)	<SRL	<SRL	NA
Chlorobenzene	<SRL	<SRL	NA
Ethylbenzene	<SRL	<SRL	NA
m & p-Xylene	<SRL	<SRL	NA
Bromoform	<SRL	<SRL	NA
Styrene	<SRL	<SRL	NA
1,1,2,2-Tetrachloroethane	<SRL	<SRL	NA
o-Xylene	<SRL	<SRL	NA
1,2,3-Trichloropropane	<SRL	<SRL	NA
Isopropylbenzene (Cumene)	<SRL	<SRL	NA
α -Pinene	3.02	3.53	15.7
2-Chlorotoluene	<SRL	<SRL	NA
n-Propylbenzene	<SRL	<SRL	NA
4-Ethyltoluene	<SRL	<SRL	NA
1,3,5-Trimethylbenzene	<SRL	<SRL	NA
β -Pinene	J 3.59	4.05	11.9
1,2,4-Trimethylbenzene	<SRL	<SRL	NA
Benzyl Chloride (a-Chlorotoluene)	<SRL	<SRL	NA
1,3-Dichlorobenzene	<SRL	<SRL	NA
1,4-Dichlorobenzene	<SRL	<SRL	NA
Sec-ButylBenzene	<SRL	<SRL	NA
1,2-Dichlorobenzene	<SRL	<SRL	NA
n-ButylBenzene	<SRL	<SRL	NA
1,2-Dibromo-3-Chloropropane	<SRL	<SRL	NA
1,2,4-Trichlorobenzene	<SRL	<SRL	NA
Naphthalene	<SRL	<SRL	NA
Hexachlorobutadiene	<SRL	<SRL	NA

¹ Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)


J - Estimated value between the detection limit and the minimum reporting limit, shown for duplication purposes only.


231087

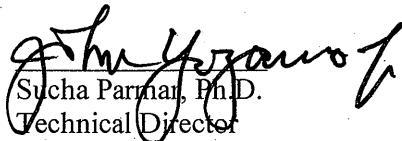
CHAIN OF CUSTODY AND ANALYSIS REQUEST

– Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

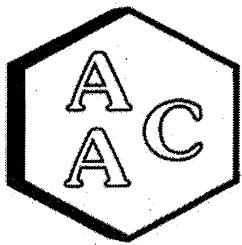
Atmospheric Analysis and Consulting - Phone: 805-650-1642 · Email: info@aaclab.com · 2225 Sperry Ave, Ventura, CA 93003				Analysis Requested		AAC Project No.:							
Client/Company Name LRI Facility				Project Name H2S Sampling and Analysis		Send Report To (Name/Email/Address) Karamjit Singh KSingh@Scsengineers.com							
Project Manager Name Karamjit Singh				Project Number 04223001.20		Send Invoice To (Name/Email/Address) Karamjit Singh KSingh@Scsengineers.com							
Turnaround Time X Rush 24 h <input type="checkbox"/> Same Day <input type="checkbox"/> Rush 48 h <input type="checkbox"/> 5 Days <input type="checkbox"/> Rush 72 h Normal Signature:				ASTM D-5504 (Include TRS) EPA TO 15 EPA 3C		PO Number LAB USE ONLY							
Client Sample Name Sample 1 – MP-1 H2S Inlet Sample 2 – MP-1 Backup Sample 3 – MP-3 H2S Outlet Sample 4 – MP-3 Backup				Sample ID 000719 000676 001911 000360		Sampling Date 6/6/23 6/6/23 6/6/23 6/6/23		Sampling Time 08:00 08:00 08:00 08:00		Container Type/Qty X X X X		Lab ID Sample Received via: FedEx <input type="checkbox"/> UPS <input type="checkbox"/> Courier <input type="checkbox"/> Other	
										Temperature Thermometer ID _____ Initials _____			
										Returned Eqmt Total cans: _____ Unused cans: _____ Flow Controllers: _____			
Client Notes/Special Instructions: Please test only Sample 1 – MP-1 H2S Inlet and Sample 3 – MP-3 H2S Outlet unless there are issues with the samples (no residual vacuum for example). If issue with primary sample please test the corresponding backup instead.				EDD? <input type="checkbox"/> Yes <input type="checkbox"/> No		LAB USE ONLY Notes: Notes:							
Relinquished By Print: John Faille Signature:		Received By Zachary Smith Print: Signature:		Date 6/6/23 Time 11:00		Date 6/7/23 Time 14:54							
Relinquished By Print: Signature:		Received By Print: Signature:		Date Date Time Signature:		Date Date Time Signature:							

Atmospheric Analysis & Consulting, Inc.

CLIENT : SCS Engineers
PROJECT NAME : H2S Sampling and Analysis
PROJECT NO. : 04223001.20
AAC PROJECT NO. : 231131
REPORT DATE : 06/15/2023


On June 14th 2023, Atmospheric Analysis & Consulting, Inc. received four (4) 1.4-Liter Summa Canisters for Fixed Gases analysis by EPA 3C and Total Reduced Sulfur analysis by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
Sample 1-MP-1 H2S Inlet	231131-45441	512.5
Sample 1-MP-1 Backup	231131-45442	440.1
Sample 3-MP-3 H2S Outlet	231131-45443	558.0
Sample 3-MP-3 Backup	231131-45444	493.1


This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. As per client request, all back up samples were placed on hold. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

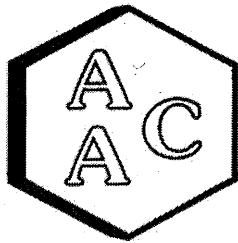
Sucha Parmar, Ph.D.
Technical Director

This report consists of 6 pages.

Atmospheric Analysis & Consulting, Inc.

CLIENT : SCS Engineers
PROJECT NO. : 231131
MATRIX : AIR

SAMPLING DATE : 06/13/2023
RECEIVING DATE : 06/14/2023
ANALYSIS DATE : 06/14/2023
REPORT DATE : 06/15/2023


Laboratory Analysis Report

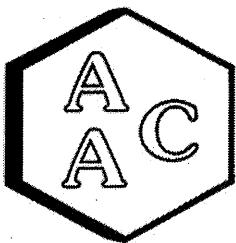
EPA 3C

Client ID	Sample 1-MP-1 H2S Inlet	Sample 3-MP-3 H2S Outlet
AAC ID	231131-45441	231131-45443
Can Dilution Factor	3.05	2.74
Analyte	Result	Result
H ₂	< 3.1 %	< 2.7 %
O ₂	1.2 %	1.0 %
N ₂	15.3 %	15.2 %
CO	< 0.3 %	< 0.3 %
CO ₂	36.5 %	36.6 %
CH ₄	47.0 %	47.2 %

All fixed gases have been normalized to 100% on a dry basis

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac

LABORATORY ANALYSIS REPORT


CLIENT : SCS Engineers
PROJECT NO. : 231131
MATRIX : AIR
UNITS : ppmv

SAMPLING DATE : 06/13/2023
RECEIVING DATE : 06/14/2023
ANALYSIS DATE : 06/14/2023
REPORT DATE : 06/15/2023

Total Reduced Sulfur Compounds by ASTM D-5504

Client ID	Sample 1-MP-1 H2S Inlet	Sample 3-MP-3 H2S Outlet
AAC ID	231131-45441	231131-45443
Canister Dil. Fac.	3.1	2.7
Analyte	Result	Result
Hydrogen Sulfide	2732	379
COS / SO2	17.3	3.53
Methyl Mercaptan	12.5	6.05
Ethyl Mercaptan	1.02	< 0.137
Dimethyl Sulfide	9.62	11.4
Carbon Disulfide	1.90	0.462
Isopropyl Mercaptan	5.02	1.42
tert-Butyl Mercaptan	1.37	< 0.137
n-Propyl Mercaptan	< 0.153	< 0.137
Methylethylsulfide	< 0.153	< 0.137
sec-Butyl Mercaptan / Thiophene	5.08	1.37
iso-Butyl Mercaptan	0.409	0.559
Diethyl Sulfide	< 0.153	< 0.137
n-Butyl Mercaptan	< 0.153	< 0.137
Dimethyl Disulfide	< 0.153	< 0.137
2-Methylthiophene	0.814	0.630
3-Methylthiophene	< 0.153	< 0.137
Tetrahydrothiophene	< 0.153	< 0.137
Bromothiophene	< 0.153	< 0.137
Thiophenol	< 0.153	< 0.137
Diethyl Disulfide	< 0.153	< 0.137
Total Unidentified Sulfur	< 0.153	4.49
Total Reduced Sulfurs	2770	405

All unidentified compound's concentrations expressed in terms of H₂S
Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed : 06/14/2023
 Analyst : RW/KM
 Units : %

Instrument ID : TCD #1
 Calb Date : 08/22/22
 Reporting Limit : 0.1%

I - Opening Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	10.0	10.0	22.7	10.2	9.3	10.2
	% Rec *	100.3	98.7	112.4	102.3	92.8	101.4

II - Method Blank - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
MB	Concentration	ND	ND	ND	ND	ND	ND

III - Laboratory Control Spike & Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
Lab Control Standards	Sample Conc	0.0	0.0	0.0	0.0	0.0	0.0
	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	LCS Result	9.9	10.2	22.5	10.3	9.3	10.1
	LCSD Result	10.4	10.5	22.3	10.2	9.3	10.1
	LCS % Rec *	98.8	100.0	111.1	103.0	93.2	101.2
	LCSD % Rec *	104.3	103.0	110.2	102.3	92.9	100.9
	% RPD ***	5.4	2.9	0.8	0.7	0.3	0.3

IV - Sample & Sample Duplicate - EPA 3C

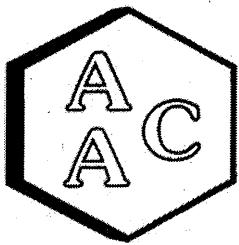
AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
231094-45315	Sample	0.0	0.0	0.8	46.7	0.0	0.4
	Sample Dup	0.0	0.0	0.7	46.7	0.0	0.4
	Mean	0.0	0.0	0.8	46.7	0.0	0.4
	% RPD ***	0.0	0.0	2.4	0.1	0.0	0.7

V - Matrix Spike & Duplicate- EPA 3C

AAC ID	Analyte	H ₂	N ₂	CH ₄	CO	CO ₂
231094-45315	Sample Conc	0.0	0.4	23.3	0.0	0.2
	Spike Conc	10.0	10.0	10.0	10.0	10.0
	MS Result	10.5	11.6	33.3	9.9	11.1
	MSD Result	10.4	11.4	33.7	9.7	10.9
	MS % Rec **	105.6	112.4	99.9	99.7	108.3
	MSD % Rec **	103.9	109.9	103.3	97.3	106.1
	% RPD ***	1.6	2.3	3.4	2.5	2.1

VI - Closing Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	10.1	9.4	20.9	10.3	9.3	10.2
	% Rec *	101.5	92.8	103.3	103.4	93.4	102.2


* Must be 85-115%

** Must be 75-125%

*** Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report ASTM D-5504

Date Analyzed: 6/14/2023

Analyst: ZD

Units: ppbV

Instrument ID: SCD#10

Calb. Date: : 07/11/2022

Opening Calibration Verification Standard

499.8 ppbV H₂S (SSI 289)

H ₂ S	Resp. (area)	Result	% Rec *	% RPD ****
Initial	1807	490	98.1	0.2
Duplicate	1779	483	96.6	1.3
TriPLICATE	1824	495	99.0	1.1

547.5 ppbV H₂S (SSI 289)

MeSH	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2429	563	102.9	1.6
Duplicate	2342	543	99.2	2.1
TriPLICATE	2404	557	101.8	0.5

479.0 ppbV H₂S (SSI 289)

DMS	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2556	483	100.9	0.0
Duplicate	2558	484	101.0	0.1
TriPLICATE	2552	482	100.7	0.1

Method Blank

Analyte	Result
H ₂ S	<PQL
MeSH	<PQL
DMS	<PQL

Duplicate Analysis

Sample ID 220521-28941

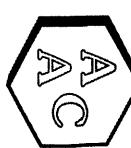
Analyte	Sample Result	Duplicate Result	Mean	% RPD ***
H ₂ S	<PQL	<PQL	0.0	0.0
MeSH	<PQL	<PQL	0.0	0.0
DMS	<PQL	<PQL	0.0	0.0

Matrix Spike & Duplicate

Sample ID 220521-28941

Analyte	Sample Conc.	Spike Added	MS Result	MSD Result	MS % Rec **	MSD % Rec **	% RPD ***
H ₂ S	<PQL	249.9	259.8	253.6	104.0	101.5	2.4
MeSH	<PQL	273.8	283.4	274.9	103.5	100.4	3.0
DMS	<PQL	239.5	237.1	248.1	99.0	103.6	4.6

Closing Calibration Verification Standard


Analyte	Std. Conc.	Result	% Rec **
H ₂ S	499.8	493.7	98.8
MeSH	547.5	536.2	97.9
DMS	479.0	440.6	92.0

* Must be 95-105%, ** Must be 90-110%, *** Must be < 10%, **** Must be < 5% RPD from Mean result.

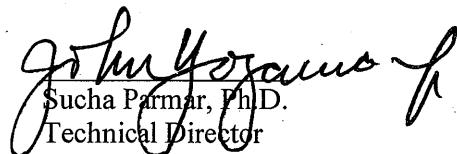
MeSH: PQL = 10.5 ppbV, MDL = 1.12 ppbV

DMS: PQL = 11.0 ppbV, MDL = 1.12 ppbV

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a **LEGAL DOCUMENT**. Complete all relevant fields.

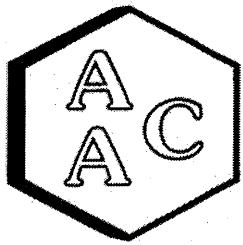
Atmospheric Analysis & Consulting, Inc.

CLIENT : SCS Engineers
PROJECT NAME : H2S Sampling and Analysis
PROJECT NO. : 04223001.20
AAC PROJECT NO. : 231214
REPORT DATE : 06/23/2023


On June 22nd, 2023, Atmospheric Analysis & Consulting, Inc. received four (4) 1.4-Liter Silonite Canisters for Fixed Gases analysis by EPA 3C and Total Reduced Sulfurs by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
Sample 1 – MP-1 H2S Inlet	231214-45844	483.5
Sample 2 – MP-1 Backup	231214-45845	441.5
Sample 3 – MP-3 H2S Outlet	231214-45846	510.5
Sample 4 – MP-3 Backup	231214-45847	535.6

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Per client request, samples "Sample 2 – MP-1 Backup" (231214-45845) and "Sample 4 – MP-3 Backup" (231214-45847) were placed on hold. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph.D.
Technical Director

This report consists of 6 pages.

Page 1

CLIENT : SCS Engineers
PROJECT NO. : 231214
MATRIX : AIR

SAMPLING DATE : 06/21/2023
RECEIVING DATE : 06/22/2023
ANALYSIS DATE : 06/22/2022
REPORT DATE : 06/23/2023

Laboratory Analysis Report

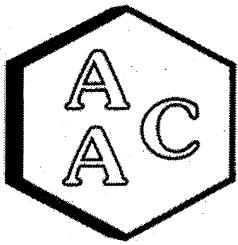
EPA 3C

Client ID	Sample 1 – MP-1 H2S Inlet	Sample 3 – MP-3 H2S Outlet
AAC ID	231214-45844	231214-45846
Can Dilution Factor	3.16	3.00
Analyte	Result	Result
H ₂	< 3.2 %	< 3.0 %
O ₂	1.3 %	1.2 %
N ₂	16.0 %	15.8 %
CO	< 0.3 %	< 0.3 %
CO ₂	36.0 %	36.2 %
CH ₄	46.7 %	46.9 %

All fixed gases have been normalized to 100% on a dry basis

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac

LABORATORY ANALYSIS REPORT


CLIENT : SCS Engineers
PROJECT NO. : 231214
MATRIX : AIR
UNITS : ppmv

SAMPLING DATE : 06/21/2023
RECEIVING DATE : 06/22/2023
ANALYSIS DATE : 06/22/2022
REPORT DATE : 06/23/2023

Total Reduced Sulfur Compounds by ASTM D-5504

Client ID	Sample 1 – MP-1 H2S Inlet	Sample 3 – MP-3 H2S Outlet
AAC ID	231214-45844	231214-45846
Canister Dil. Fac.	3.2	3.0
Analyte	Result	Result
Hydrogen Sulfide	2613	0.428
COS / SO2	< 0.158	1.09
Methyl Mercaptan	16.2	< 0.150
Ethyl Mercaptan	1.36	< 0.150
Dimethyl Sulfide	12.2	26.0
Carbon Disulfide	0.444	0.638
Isopropyl Mercaptan	5.78	< 0.150
tert-Butyl Mercaptan	1.52	< 0.150
n-Propyl Mercaptan	< 0.158	< 0.150
Methylethylsulfide	< 0.158	< 0.150
sec-Butyl Mercaptan / Thiophene	5.59	< 0.150
iso-Butyl Mercaptan	< 0.158	< 0.150
Diethyl Sulfide	< 0.158	< 0.150
n-Butyl Mercaptan	< 0.158	< 0.150
Dimethyl Disulfide	< 0.158	< 0.150
2-Methylthiophene	0.788	< 0.150
3-Methylthiophene	< 0.158	< 0.150
Tetrahydrothiophene	< 0.158	< 0.150
Bromoethane	< 0.158	< 0.150
Thiophenol	< 0.158	< 0.150
Diethyl Disulfide	< 0.158	< 0.150
Total Unidentified Sulfur	< 0.158	< 0.150
Total Reduced Sulfurs	2657	27.1

All unidentified compound's concentrations expressed in terms of H₂S
Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report ASTM D-5504

Date Analyzed: 6/22/2023

Analyst: ZD

Units: ppbV

Instrument ID: SCD#10
Calb. Date: 07/11/2022

Opening Calibration Verification Standard

499.8 ppbV H2S (SSI 289)

H ₂ S	Resp. (area)	Result	% Rec *	% RPD ****
Initial	1845	501	100.2	1.8
Duplicate	1894	514	102.8	0.8
Triuplicate	1896	514	102.9	0.9

547.5 ppbV H2S (SSI 289)

MeSH	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2449	568	103.7	1.4
Duplicate	2419	561	102.5	0.2
Triuplicate	2375	551	100.6	1.6

479.0 ppbV H2S (SSI 289)

DMS	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2579	488	101.8	0.2
Duplicate	2525	477	99.7	1.9
Triuplicate	2615	494	103.2	1.6

Method Blank

Analyte	Result
H ₂ S	<PQL
MeSH	<PQL
DMS	<PQL

Duplicate Analysis

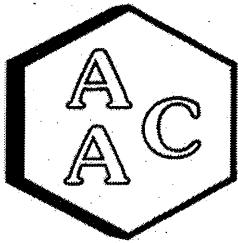
Sample ID 220521-28941

Analyte	Sample Result	Duplicate Result	Mean	% RPD ***
H ₂ S	<PQL	<PQL	0.0	0.0
MeSH	<PQL	<PQL	0.0	0.0
DMS	<PQL	<PQL	0.0	0.0

Matrix Spike & Duplicate

Sample ID 220521-28941

Analyte	Sample Conc.	Spike Added	MS Result	MSD Result	MS % Rec **	MSD % Rec **	% RPD ***
H ₂ S	<PQL	249.9	252.3	267.9	101.0	107.2	6.0
MeSH	<PQL	273.8	277.5	285.1	101.4	104.1	2.7
DMS	<PQL	239.5	249.9	246.5	104.3	102.9	1.3


Closing Calibration Verification Standard

Analyte	Std. Conc.	Result	% Rec **
H ₂ S	499.8	534.3	106.9
MeSH	547.5	544.6	99.5
DMS	479.0	503.1	105.0

* Must be 95-105%, ** Must be 90-110%, *** Must be < 10%, **** Must be < 5% RPD from Mean result.

MeSH: PQL = 10.5 ppbV, MDL = 1.12 ppbV.

DMS: PQL = 11.0 ppbV, MDL = 1.12 ppbV

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed : 06/22/2023
 Analyst : RW/KM
 Units : %

Instrument ID : TCD #1
 Calb Date : 08/22/22
 Reporting Limit : 0.1%

I - Opening Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	9.6	10.1	22.7	10.1	9.1	10.1
	% Rec *	95.7	99.5	111.9	100.5	91.4	100.2

II - Method Blank - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
MB	Concentration	ND	ND	ND	ND	ND	ND

III - Laboratory Control Spike & Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
Lab Control Standards	Sample Conc	0.0	0.0	0.0	0.0	0.0	0.0
	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	LCS Result	9.6	10.4	22.4	10.0	9.1	10.0
	LCSD Result	9.8	10.5	22.9	10.1	9.1	10.1
	LCS % Rec *	95.8	102.1	110.5	100.4	91.0	100.2
	LCSD % Rec *	98.6	103.0	113.3	101.3	91.1	101.2
	% RPD ***	2.9	0.9	2.5	0.9	0.1	1.0

IV - Sample & Sample Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
231100-45335	Sample	0.0	1.1	10.0	14.6	0.0	11.7
	Sample Dup	0.0	1.1	9.9	14.5	0.0	11.6
	Mean	0.0	1.1	10.0	14.6	0.0	11.7
	% RPD ***	0.0	2.7	1.7	0.6	0.0	1.2

V - Matrix Spike & Duplicate- EPA 3C

AAC ID	Analyte	H ₂	N ₂	CH ₄	CO	CO ₂
231100-45335	Sample Cone	0.0	5.0	7.3	0.0	5.8
	Spike Cone	10.0	10.0	10.0	10.0	10.0
	MS Result	9.5	15.3	17.3	9.0	15.9
	MSD Result	10.3	15.5	17.7	9.6	16.3
	MS % Rec **	95.4	103.2	99.5	90.2	100.8
	MSD % Rec **	103.2	105.1	103.8	96.4	104.2
	% RPD ***	7.9	1.8	4.2	6.6	3.4

VI - Closing Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	9.8	9.7	21.0	10.1	9.1	9.9
	% Rec *	98.2	95.6	103.7	101.0	91.3	98.7

* Must be 85-115%

** Must be 75-125%

*** Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

231214

CHAIN OF CUSTODY AND ANALYSIS REQUEST

– Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consulting - Phone: 805-650-1642 - Email: info@aaclab.com

2225 Sperry Ave, Ventura, CA 93003

Analysis Requested

AAC Project No.:

Client/Company Name
LRI Facility

Project Number
H2S Sampling and Analysis
04223001.20

Project Manager Name
Karamjit Singh

Turnaround Time
X Rush 24 h Same Day
 Rush 48 h 5 Days
 Rush 72 h Normal

Sampler Name
Print: John Faille

Signature: *John Faille*

Signature: *John Faille*

ASTM D-5504 (Include TRS)

EPA TO 15

EPA 3C

Send Invoice To (Name/Email/Address)
Karamjit Singh
KSingh@Scsengineers.com

PO Number

LAB USE ONLY

Sample Received

via:

FedEx

UPS

Courier

Other _____

Temperature _____ °C

Thermometer _____

ID _____

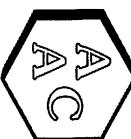
Initials _____

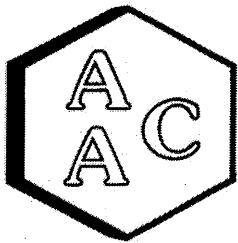
Returned Eqmt

Total cans: _____

Unused cans: _____

Flow Controllers: _____


Client Notes/Special Instructions: Please test only Sample 1 – MP-1 H2S Inlet and Sample 3 – MP-3 H2S Outlet unless there are issues with the samples (no residual vacuum for example). If issue with primary sample please test the corresponding backup instead.


EDD?
 Yes
 No

LAB USE ONLY

Notes: _____

Relinquished By Print: John Faille Signature: <i>John Faille</i>	Date 6/21/23	Received By Print: _____	Date
Relinquished By Print: _____ Signature: _____	Time 17:00	Signature: _____	Time
Date	Received By Print: _____	Date 6/21/23	
Time 17:00	Signature: _____	Time 10:32	

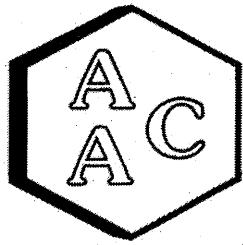
Atmospheric Analysis & Consulting, Inc.

CLIENT : SCS Engineers
PROJECT NAME : H2S Sampling and Analysis
PROJECT NO. : 04223001.04
AAC PROJECT NO. : 231265
REPORT DATE : 06/29/2023

On June 28th, 2023, Atmospheric Analysis & Consulting, Inc. received four (4) 1.4-Liter Summa Canisters for Fixed Gases analysis by EPA 3C and Total Reduced Sulfur analysis by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
Sample 1-MP-1 H2S Inlet	231265-46202	543.5
Sample 2-MP-1 Backup	231265-46203	571.5
Sample 3-MP-3 H2S Outlet	231265-46204	501.0
Sample 4-MP-3 Backup	231265-46205	496.5

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Samples 231265-46203 (Sample 2-MP Backup) and 231265-46205 (Sample 4-MP-3 backup) were placed on Hold per client request. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized the release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

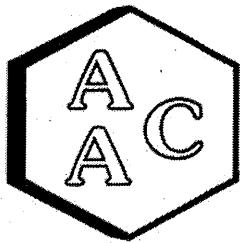
Sucha Parmar, Ph.D.
Technical Director

This report consists of 6 pages.

Page 1

CLIENT : SCS Engineers
PROJECT NO. : 231265
MATRIX : AIR

SAMPLING DATE : 06/27/2023
RECEIVING DATE : 06/28/2023
ANALYSIS DATE : 06/28/2023
REPORT DATE : 06/29/2023


Laboratory Analysis Report

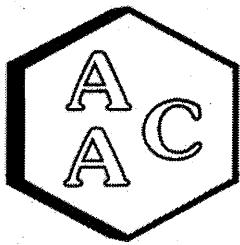
EPA 3C

Client ID	Sample 1-MP-1 H2S Inlet	Sample 3-MP-3 H2S Outlet
AAC ID	231265-46202	231265-46204
Can Dilution Factor	2.81	3.06
Analyte	Result	Result
H ₂	< 2.8 %	< 3.1 %
O ₂	1.4 %	1.4 %
N ₂	16.7 %	16.6 %
CO	< 0.3 %	< 0.3 %
CO ₂	35.9 %	35.9 %
CH ₄	46.0 %	46.0 %

All fixed gases have been normalized to 100% on a dry basis

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac

LABORATORY ANALYSIS REPORT


CLIENT : SCS Engineers
PROJECT NO. : 231265
MATRIX : AIR
UNITS : ppmv

SAMPLING DATE : 06/27/2023
RECEIVING DATE : 06/28/2023
ANALYSIS DATE : 06/28/2023
REPORT DATE : 06/29/2023

Total Reduced Sulfur Compounds by ASTM D-5504

Client ID	Sample 1-MP-1 H ₂ S Inlet	Sample 3-MP-3 H ₂ S Outlet
AAC ID	231265-46202	231265-46204
Canister Dil. Fac.	2.8	3.1
Analyte	Result	Result
Hydrogen Sulfide	2369	0.493
COS / SO ₂	< 0.141	1.95
Methyl Mercaptan	12.7	< 0.153
Ethyl Mercaptan	0.687	< 0.153
Dimethyl Sulfide	10.2	9.94
Carbon Disulfide	0.369	0.395
Isopropyl Mercaptan	5.31	< 0.153
tert-Butyl Mercaptan	0.966	< 0.153
n-Propyl Mercaptan	< 0.141	< 0.153
Methylethylsulfide	< 0.141	< 0.153
sec-Butyl Mercaptan / Thiophene	4.31	0.819
iso-Butyl Mercaptan	< 0.141	< 0.153
Diethyl Sulfide	< 0.141	< 0.153
n-Butyl Mercaptan	< 0.141	< 0.153
Dimethyl Disulfide	< 0.141	< 0.153
2-Methylthiophene	0.874	< 0.153
3-Methylthiophene	< 0.141	< 0.153
Tetrahydrothiophene	< 0.141	< 0.153
Bromo thiophene	< 0.141	< 0.153
Thiophenol	< 0.141	< 0.153
Diethyl Disulfide	< 0.141	< 0.153
Total Unidentified Sulfur	< 0.141	5.31
Total Reduced Sulfurs	2404	17.0

All unidentified compound's concentrations expressed in terms of H₂S
Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed : 06/28/2023
 Analyst : RW/KM
 Units : %

Instrument ID : TCD #1
 Calb Date : 08/22/22
 Reporting Limit : 0.1%

I - Opening Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	10.0	10.1	22.5	10.3	9.3	10.1
	% Rec *	100.1	99.3	111.1	102.9	93.1	100.8

II - Method Blank - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
MB	Concentration	ND	ND	ND	ND	ND	ND

III - Laboratory Control Spike & Duplicate - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
Lab Control Standards	Sample Conc	0.0	0.0	0.0	0.0	0.0	0.0
	Spike Cone	10.0	10.2	20.2	10.0	10.0	10.0
	LCS Result	9.8	9.9	21.9	10.3	9.3	10.1
	LCSD Result	10.1	10.0	22.0	10.5	9.3	10.3
	LCS % Rec *	98.4	98.0	108.4	102.7	93.1	100.7
	LCSD % Rec *	101.0	98.2	108.5	104.5	93.7	102.5
	% RPD ***	2.6	0.2	0.1	1.7	0.7	1.7

IV - Sample & Sample Duplicate - EPA 3C

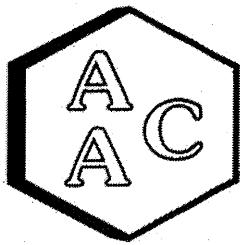
AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
231134-45453	Sample	0.0	13.3	53.0	0.0	0.0	0.0
	Sample Dup	0.0	13.1	52.6	0.0	0.0	0.0
	Mean	0.0	13.2	52.8	0.0	0.0	0.0
	% RPD ***	0.0	1.3	0.8	0.0	0.0	0.0

V - Matrix Spike & Duplicate- EPA 3C

AAC ID	Analyte	H ₂	N ₂	CH ₄	CO	CO ₂
231134-45453	Sample Cone	0.0	26.4	0.0	0.0	0.0
	Spike Cone	10.0	10.0	10.0	10.0	10.0
	MS Result	10.7	36.1	10.9	9.9	10.7
	MSD Result	10.8	36.3	10.9	9.8	10.7
	MS % Rec **	107.1	96.8	109.4	99.3	107.1
	MSD % Rec **	108.4	98.7	108.9	98.4	106.5
	% RPD ***	1.2	1.9	0.5	0.9	0.6

VI - Closing Continuing Calibration Verification - EPA 3C

AAC ID	Analyte	H ₂	O ₂	N ₂	CH ₄	CO	CO ₂
CCV	Spike Conc	10.0	10.2	20.2	10.0	10.0	10.0
	Result	9.9	9.7	20.6	10.2	9.2	10.0
	% Rec *	99.5	95.2	101.8	101.9	92.3	100.1


* Must be 85-115%

** Must be 75-125%

*** Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report ASTM D-5504

Date Analyzed: 6/28/2023

Analyst: ZD

Units: ppbV

Instrument ID: SCD#10

Calb. Date: : 07/11/2022

Opening Calibration Verification Standard

499.8 ppbV H2S (SSI1289)

H ₂ S	Resp. (area)	Result	% Rec *	% RPD ****
Initial	1834	498	99.6	0.5
Duplicate	1824	495	99.0	1.1
Triplicate	1874	508	101.7	1.6

547.5 ppbV H2S (SSI1289)

MeSH	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2299	533	97.4	2.5
Duplicate	2397	556	101.5	1.6
Triplicate	2379	552	100.8	0.9

479.0 ppbV H2S (SSI1289)

DMS	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2555	483	100.8	0.1
Duplicate	2603	492	102.7	1.9
Triplicate	2503	473	98.8	2.0

Method Blank

Analyte	Result
H ₂ S	<PQL
MeSH	<PQL
DMS	<PQL

Duplicate Analysis

Sample ID 220521-28941

Analyte	Sample Result	Duplicate Result	Mean	% RPD ***
H ₂ S	<PQL	<PQL	0.0	0.0
MeSH	<PQL	<PQL	0.0	0.0
DMS	<PQL	<PQL	0.0	0.0

Matrix Spike & Duplicate

Sample ID 220521-28941

Analyte	Sample Conc.	Spike Added	MS Result	MSD Result	MS % Rec **	MSD % Rec **	% RPD ***
H ₂ S	<PQL	249.9	261.8	245.9	104.8	98.4	6.3
MeSH	<PQL	273.8	290.1	285.5	106.0	104.3	1.6
DMS	<PQL	239.5	255.4	261.8	106.6	109.3	2.5

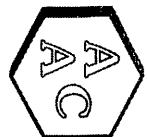
Closing Calibration Verification Standard

Analyte	Std. Conc.	Result	% Rec **
H ₂ S	499.8	541.6	108.4
MeSH	547.5	567.8	103.7
DMS	479.0	480.5	100.3

* Must be 95-105%, ** Must be 90-110%, *** Must be < 10%, **** Must be < 5% RPD from Mean result.

MeSH: PQL = 10.5 ppbV, MDL = 1.12 ppbV

DMS: PQL = 11.0 ppbV, MDL = 1.12 ppbV


271265

CHAIN OF CUSTODY AND ANALYSIS REQUEST

– Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consulting • Phone: 805-650-1642 • Email: info@aaclab.com • 2225 Sperry Ave, Ventura, CA 93003

Client/Company Name LR Facility		Project Name H2S Sampling and Analysis		Analysis Requested		AAC Project No.: Send Report To (Name/Email/Address)	
Project Manager Name Karamjit Singh		Project Number 04223001.04		Signature: Karamjit Singh KSingh@Scsengineers.com			
Turnaround Time X Rush 24 h <input type="checkbox"/> Same Day <input type="checkbox"/> Rush 48 h <input type="checkbox"/> 5 Days <input type="checkbox"/> Rush 72 h <input type="checkbox"/> Normal		Sampler Name Print: John Faille		Send Invoice To (Name/Email/Address) Karamjit Singh KSingh@Scsengineers.com		PO Number	
		Signature:					
				ASTM D-5504 (Include TRS)		LAB USE ONLY	
				EPA TO 15		Sample Received via:	
				EPA 3C		<input type="checkbox"/> FedEx <input type="checkbox"/> UPS <input type="checkbox"/> Counter <input type="checkbox"/> Other	
						Temperature °C	
						Thermometer ID _____ Initials _____	
						Returned Equipment Total cans: _____	
						Unused cans: _____	
						Flow Controllers: _____	
Client Notes/Special Instructions: Please test only Sample 1 – MP-1 H2S Inlet and Sample 3 – MP-3 H2S Outlet unless there are issues with the samples (no residual vacuum for example). If issue with primary sample please test the corresponding backup instead.		EDD? <input type="checkbox"/> Yes <input type="checkbox"/> No		LAB USE ONLY Notes:			
Relinquished By Print: Karam Singh Signature: Relinquished By Print: Signature:		Date 5/27/23 Time	Received By Print: Signature:	Date Time			
		Date 6/19/23 Time	Received By Print: Signature:	Date 6/19/23 Time 1006			

Attachment H SEPA Checklist

ENVIRONMENTAL CHECKLIST

Because of the State Environmental Policy Act, the action for which you are filing a Notice of Construction and Application for Approval to this Agency requires the completion of an environmental checklist.

BUT: If you can answer "yes" to either of the following statements with respect to the action being proposed, the attached checklist need not be completed:

1. I have obtained a State, City, or County Permit and filled out an environmental checklist.

Yes No

If yes, complete the following:

State, City or County Department: _____

Date the checklist was completed: _____

Attach a copy of the checklist

2. An environmental checklist or assessment has previously been filled out for another agency.

Yes No

If yes, complete the following:

Agency: _____

Date the checklist was completed: _____

Attach a copy of the checklist

If your answers are NO to both of the above statements, you must complete the attached environmental checklist.

Prepared by:

Signature _____

Name _____

Position _____

Agency/Organization _____

Date Submitted _____

ENVIRONMENTAL CHECKLIST

Date: _____

Proponent: Pierce County Recycling, Composting and Disposal LLC (dba LRI)

Project, Brief Title: _____

Purpose of Checklist:

Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

Instructions for Applicants:

This environmental checklist asks you to describe some basic information about your proposal. Please answer each question accurately and carefully, to the best of your knowledge. You may need to consult with an agency specialist or private consultant for some questions. You may use "not applicable" or "does not apply" only when you can explain why it does not apply and not when the answer is unknown. You may also attach or incorporate by reference additional studies reports. Complete and accurate answers to these questions often avoid delays with the SEPA process as well as later in the decision-making process.

The checklist questions apply to all parts of your proposal, even if you plan to do them over a period of time or on different parcels of land. Attach any additional information that will help describe your proposal or its environmental effects. The agency to which you submit this checklist may ask you to explain your answers or provide additional information reasonably related to determining if there may be significant adverse impact.

Instructions for Lead Agencies:

Please adjust the format of this template as needed. Additional information may be necessary to evaluate the existing environment, all interrelated aspects of the proposal and an analysis of adverse impacts. The checklist is considered the first but not necessarily the only source of information needed to make an adequate threshold determination. Once a threshold determination is made, the lead agency is responsible for the completeness and accuracy of the checklist and other supporting documents.

Use of Checklist for Nonproject Proposals:

For nonproject proposals (such as ordinances, regulations, plans and programs), complete the applicable parts of Sections A, B, and C plus section D: Supplemental Sheet for Nonproject Actions.

Please completely answer all questions that apply and note that the words "project," "applicant," and "property or site" should be read as "proposal," "proponent," and "affected geographic area," respectively. The lead agency may exclude (for non-projects) questions in Section B: Environmental Elements that do not contribute meaningfully to the analysis of the proposal.

ENVIRONMENTAL CHECKLIST

A. BACKGROUND

1. Name of proposed project, if applicable:			
2. Name of Applicant			
3. Applicant Address		City	State
Applicant Phone		Applicant Email	
Contact Person		Title	
Company/Firm			
4. Date Checklist Prepared		5. Agency Requesting Checklist	
6. Proposed timing or schedule (including phasing, if applicable).			
7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? Yes No. If yes, explain.			
8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.			
9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? Yes No. If yes, explain.			
10. List any government approvals or permits that will be needed for your proposal, if known.			

ENVIRONMENTAL CHECKLIST

11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

ENVIRONMENTAL CHECKLIST

B. ENVIRONMENTAL ELEMENTS

1. EARTH					
<p>a. General description of the site:</p> <p>flat rolling hilly steep slopes mountains other _____</p>					
<p>b. What is the steepest slope on the site (approximate percent slope)?</p>					
<p>c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them, and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.</p>					
<p>d. Are there surface indications or history of unstable soils in the immediate vicinity? Yes No. If yes, describe.</p>					
<p>e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill.</p>					
<p>f. Could erosion occur as a result of clearing, construction, or use? Yes No. If yes, generally describe.</p>					
<p>g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?</p>					
<p>h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:</p>					

ENVIRONMENTAL CHECKLIST

2. AIR

a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, industrial wood smoke, greenhouse gases) during construction, operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities, if known.

b. Are there any off-site sources of emissions or odor that may affect your proposal? Yes No. If yes, generally describe.

c. Proposed measures to reduce or control emissions or other impacts to air, if any:

3. WATER

a. Surface

1. Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands) ? Yes No. If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

2. Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? Yes No. If yes, please describe and attach available plans.

3. Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

4. Will the proposal require surface water withdrawals or diversions? Yes No. Give general description, purpose, and approximate quantities if known.

5. Does the proposal lie within a 100-year floodplain? Yes No. If yes, note location on the site plan.

ENVIRONMENTAL CHECKLIST

6. Does the proposal involve any discharges of waste materials to surface waters? Yes No. If yes, describe the type of waste and anticipated volume of discharge.		
b. Ground Water		
1. Will groundwater be withdrawn from a well for drinking water or other purposes? Yes No. If yes, give a general description of the well, proposed uses and approximate quantities withdrawn from the well.		
Will water be discharged to groundwater? Yes No. If yes, give general description, purpose, and approximate quantities, if known.		
2. Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: domestic sewage; industrial, containing the following chemicals...; agricultural; etc.). Describe the general size of the systems, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.		
c. Water Runoff (including storm water)		
1. Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? Yes No. If yes, describe.		
2. Could waste material enter ground or surface waters? Yes No. If yes, generally describe.		
3. Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? Yes No. If yes, describe.		
d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:		

ENVIRONMENTAL CHECKLIST

4. PLANTS				
a. Check the types of vegetation found on the site:				
Deciduous Trees:	Alder	Maple	Aspen	other (specify):
Evergreen Trees:	Fir	Cedar	Pine	other (specify):
Shrubs				
Grass				
Pasture				
Crop or Grain				
Orchards, Vineyards, or other permanent crops				
Other types of Vegetation (specify):				
Wet Soil Plants:	Cattail	Buttercup	other (specify):	
	Bulrush	Skunk Cabbage		
Water Plants:	Water Lily	Eelgrass	Milfoil	other (specify):
b. What kind and amount of vegetation will be removed or altered?				
c. List threatened or endangered species known to be on or near the site.				
d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any:				
e. List all noxious weeds and invasive species known to be on or near the site.				

ENVIRONMENTAL CHECKLIST

5. ANIMALS

a. Indicate birds and other animals that have been observed on or near the site or are known to be on or near the site.

Birds:	Hawk	Heron	other (specify):
	Eagle	Songbirds	
Mammals:	Deer	Bear	other (specify):
	Elk	Beaver	
Fish:	Bass	Salmon	Trout
	Herring	Shellfish	other (specify):

b. List any threatened or endangered species known to be on or near the site.

c. Is the site part of a migration route? Yes No. If yes, explain.

d. Proposed measures to preserve or enhance wildlife, if any:

e. List any invasive animal species known to be on or near the site.

6. ENERGY AND NATURAL RESOURCES

a. What kinds of energy (electric, natural gas, oil, woodstove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc.

b. Would your project affect the potential use of solar energy by adjacent properties? Yes No. If yes, generally describe.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

ENVIRONMENTAL CHECKLIST

7. ENVIRONMENTAL HEALTH

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste that could occur as a result of this proposal? Yes No.
If yes, describe:

2. Describe any known or possible contamination at the site from present or past uses.

3. Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity.

4. Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project's development or construction, or at any time during the operating life of the project.

5. Describe special emergency services that might be required.

6. Proposed measures to reduce or control environmental health hazards, if any:

b. Noise

1. What types of noise exist in the area that may affect your project (for example, traffic, equipment, operation, other)?

2. What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example, traffic, construction, operation, other)? Indicate what hours noise would come from the site.

3. Proposed measures to reduce or control noise impacts, if any:

ENVIRONMENTAL CHECKLIST

8. LAND AND SHORELINE USE

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? Yes No. If yes, describe.

b. Has the project site been used as working farmlands or working forest lands? Yes No. If yes, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

1. Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? Yes No. If yes, how?

c. Describe any structures on the site.

d. Will any structures be demolished? Yes No. If yes, what?

e. What is the current zoning classification of the site?

f. What is the current comprehensive plan designation of the site?

g. If applicable, what is the current shoreline master program designation of the site?

h. Has any part of the site been classified as a critical area by the city or community? Yes No. If yes, specify.

i. Approximately how many people would reside or work in the completed project?

ENVIRONMENTAL CHECKLIST

j. Approximately how many people would the completed project displace?

k. Proposed measures to avoid or reduce displacement impacts, if any:

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

m. Proposed measures to ensure the proposal is compatible with nearby agricultural and forest lands of long-term commercial significance, if any:

9. HOUSING

a. Approximately how many units would be provided, if any? Indicate whether high- middle- or low-income housing.

b. Approximately how many units, if any, would be eliminated? Indicate whether high- middle- or low-income housing.

c. Proposed measures to reduce or control housing impacts, if any:

10. AESTHETICS

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

b. What views in the immediate vicinity would be altered or obstructed?

c. Proposed measures to reduce or control aesthetic impacts, if any:

ENVIRONMENTAL CHECKLIST

11. LIGHT AND GLARE

- a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

- b. Could light or glare from the finished project be a safety hazard or interfere with views?

- c. What existing off-site sources of light or glare may affect your proposal?

- d. Proposed measures to reduce or control light and glare impacts, if any:

12. RECREATION

- a. What designated and informal recreational opportunities are in the immediate vicinity?

- b. Would the proposed project displace any existing recreational uses? Yes No. If yes, describe.

- c. Proposed measures to reduce or control impacts on recreation, including recreational opportunities to be provided by the project or applicant, if any:

13. HISTORIC AND CULTURAL PRESERVATION

- a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? Yes No. If yes, specifically describe.

- b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

ENVIRONMENTAL CHECKLIST

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

14. TRANSPORTATION

a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on-site plans, if any.

b. Is site or affected geographic area currently served by public transit? Yes No. If yes, generally describe. If not, what is the approximate distance to the nearest transit stop?

c. How many parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate?

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? Yes No. If yes, generally describe (indicate whether public or private).

e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation? Yes No. If yes, generally describe.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates?

ENVIRONMENTAL CHECKLIST

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? Yes No. If yes, generally describe.

h. Proposed measures to reduce or control transportation impacts, if any:

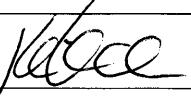
15. PUBLIC SERVICES

a. Would the project result in an increased need for public services (for example, fire protection, police protection, public transit, health care, schools, other)? Yes No. If yes, generally describe.

b. Proposed measures to reduce or control direct impacts on public services, if any:

16. UTILITIES

a. Indicate utilities currently available at the site:


Electricity	Natural gas	Water	Refuse Service
Telephone	Sanitary Sewer	Septic System	Other (specify):

b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity that might be needed.

ENVIRONMENTAL CHECKLIST

C. SIGNATURE

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature	
Name	Kevin Green
Position	District Manager
Agency/Organization	Waste Connections
Date Submitted	7/7/23